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distinct steps:
Abstract—Super-resolution is nowadays used for a high-resolu * Registration
tion image produced from several low-resolutionsgdiames. In this «  Reconstruction/Interpolation
work, we consider the problem of high-quality ipelation of a
single noise-free image. Such images may come fhdferent sour-
ces, i.e., they may be frames of videos, individuiatures, etc. On ) ) ) )
the other hand, in the encoder we apply a downsagpia bidimen- Image registration is a technique that can be used
sional interpolation of each frame, and in the decowe apply a determine the relative translations between theitimmages.
upsampling by which we restore the original siz¢hefimage. If the Generally, the desire is to do this from the cotstesf the
compression ratio is very high, then we use a clutive mask that images alone, without any prior knowledge. There miany

restores the edges, eliminating the blur. Finddgth, the encoder . . . . .
and the complete decoder are implemented on GeRarpbse different methods for performing registration [hpwever, in

computation on Graphics Processing Units (GPGPtjscdn fact, (h€ context of image super-resolution, image regisn is
the mentioned mask is coded inside texture memcay@PGPU. required to determine the offsets between the isagith
accuracy down to a small fraction of a pixel.[1]

Keywords—General-Purpose computation on Graphics Process- Once the images have been registered, all thespirein

» Deblurring

ing Units, Image Compression, Interpolation, Sugselution. the ensemble can be combined to form a composigeniT he
resultant image is no longer sampled on a unifaratangular
. INTRODUCTION grid, but due to global translational motion, itsha semi-

DIGITAL image capture produces discrete representationsufiform structure, as can be seen in Figure 1. Retoacting
continuous scenes. This discretisation in both esgawd the image data at all points on a high resolutiod gequires
intensity is a sampling process that creates aliasind infor- that the semi-regular data is interpolated andmeged. It is
mation at frequencies above the Nyquist rate is loss com- this interpolation problem that is addressed ia faiper.

mon to wish to construct a higher resolution imigen a tem-
plate image or a set of images, but the aliasimylass of fre-
guency information makes this an ill-posed (invieme-blem.

The typical solution to this problem (known in titerature
as image super-resolution reconstruction, or singiper-
resolution) is to use an ensemble of related lawsolution
images. As each of these images has aliased therhige-
quency information slightly differently, under cart condi-
tions it is possible to “unwrap” some of the alisiand
reconstruct the lost higher frequencies.

There are numerous methods [1-5] of performing supe
resolution. Many of them are computationally expensn
nature, but allow for complicated motion modelgngficant
noise and image degradation, and other aspectsatkahot
considered in this work. Given assumptions of gldtansla-

tional motion, low noise and linear space and timariant L MLl el oo
blur due to the imaging sensor point spread func{i®SF), A A A
image super-resolution reconstruction can be spidt there O LR image ! O LR image3

A LR image?2 @ LR image4

.................. Uniform HR grid
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dure can now be applied that restores the highuéneges that
have been suppressed by the low-resolution imagingess.
In this paper we perform this deblurring after thierpolated
process via a convolution between the up-samplegénand a
convolutive mask deduced specifically.

However, the main goal of Super-Resolution (SR)hoes$
—in practice— is to recover a high-resolution im&gen one or
more low-resolution input images. Methods for SR d¢se
broadly classified into two families of methods:

1. The classical multi-image super-resolution, and
2. Example-Based super-resolution.

In the classical multi-image SR (e.qg., [2] to ngoet a few)
asset of low-resolution images of the same scem¢aken (at
subpixel misalignments). Each low-resolution imag@oses
asset of linear constraints on the unknown higbluti®n
intensity values. If enough low-resolution images available
(at subpixel shifts), then the set of equations obexs
determined and can be solved to recover the higbluton
image. Practically, however, this approach is nicady
limited only to small increases in resolution [3y(factors
smaller than 2).

These limitations have lead to the developmentEofam-
ple-Based Super-Resolution” also termed “imageubalb-
tion” (see references in [2]). In example-based &Rrespon-
dences between low and high-resolution image patete
learned from a data base of low and high-resolutinage
pairs (usually with a relative scale factor of 2nd then
applied to a new low-resolution image to recover ritost
likely high-resolution version. Higher SR factoravk often
been obtained by repeated applications of this ga®c
Example-based SR has been shown to exceed the lahit
classical SR. However, unlike classical SR, thé h&solution
details reconstructed (“hallucinated”) by exampéséd SR
are not guaranteed to provide the true (unknowgh-hésolu-
tion details.

Sophisticated methods for image up-scaling basettam
ning edge models have also been proposed (e.§)]).[3he
goal of these methods is to magnify (up-scale)naage while
maintaining the sharpness of the edges and thésdetahe
image. In contrast, in SR (example-based as wetlassical)
the goal is to recover nemissing high-resolution detaithat
are not explicitly found in any individual low-rdation image
(details beyond the Nyquist frequency of the lowetation
image). In the classical SR, this high-frequendgrimation is
assumed to be split across multiple low-resolutimages,
implicitly found there in aliased form. In examflased SR,
this missing high-resolution information is assumied be
available in the high-resolution data base patcimes learned
from the low-res/high-res pairs of examples indaéabase.

However beyond what we have said above, in thigpage
consider the interpolation of a single image.

image magnification. In this work, we suggest tolexghe
high performance of general-purpose computatioprogram-
mable graphics processing units (GPGPUs) for agirai
image magnification method. To this end, we propase
GPGPU-friendly algorithm for image up-sampling witdge
restoration image interpolation, which avoids rmgartifacts,
excessive blurring, and stair-casing of obliqueesddAt the
same time it features gray-scale invariance, idiegige to
color images, and allows for real-time processirgfudl-
screen images on today’'s GPGPUs [6-9].

The Bidimensional Interpolation is outlined in Sentll,
where we discuss the problem of interpolating Wguzccep-
table images at a higher resolution. We first preteninter-
polation problem and why linear interpolation fitere inade
quate for image data. To represent the major mattieah
approaches to image processing, we discuss andaggdlve
different image interpolation methods. Super-resolusicime-
me for compression including linear interpolatioe autlined
in Section Ill. Metrics are outlined in Section I8imulations
are outline in Section V. Finally, Section VI prdes a conclu-
sion of the paper.

I1. BIDIMENSIONAL INTERPOLATION

A digital image is not an exact snapshot of realitys only
a discrete approximation. This fact should be agmtato the
average web surfer, as images commonly become yblock
jagged after being resized to fit the browser. Towd gf image
Interpolation is to produce acceptable imagesfémdint reso-
lutions from a single low-resolution image. Theuattresolu-
tion of an image is defined as the number of pixeld, the
effective resolution is a much harder quantity to aefis it
depends on subjective human judgment and percepfioa
goal of this section is to exploreffirent mathematical formu-
lations of this essentially aesthetic quantity.

The image interpolation problem goes by many names,
depending on the application: image resizing, imageam-
pling/down-sampling, digital zooming, image maggifion,
resolution enhancement, etc. The term super-résplus
sometimes used, although in the literature thiegaly refers
to producing a high-resolution image from multipleages
such as a video sequence. If we define interpolaoffilling
in the pixels in between,” the image interpolatmoblem can
be viewed as a subset of the inpainting problem Esgure 2).

The applications of image interpolation range frone
common place viewing of online images to the marphss-
ticated magnification of satellite images. With ttise of
consumer-based digital photography, users expetiate a
greater control over their digital images. Digitalbming has a
role in picking up clues and details in surveillanmages and
video. As high-definition television (HDTV) technglp enters
the marketplace, engineers are interested in fdstpolation
algorithms for viewing traditional low-definition @grams on

On the other handhe rendering of lower resolution imageHDTV. Astronomical images from rovers and probes ar

data on higher resolution displays has become yao@mmon
task, in particular because of the increasing paniyl of
webcams, camera phones, and low-bandwidth videarsing.
Thus, there is a strong demand for real-time, lgjgality

received at an extremely low transmission rate a0 bytes
per second), making the transmission of high-regsiudata
infeasible [10]. In medical imaging, neurologistsul like to



Fig.2: Image interpolation using linear methodri&rp2 built-in
MATLAB® function. Top: original image. Medium: clesup of
eye in image. Down: interpolated image.

have the ability to zoom in on specific parts ofilbt@mo-
graphy images. This is just a short list of appiass, but the
wide variety cautions us that our desired interfiataresult
could vary depending on the application and user.

A.The Image Interpolation Problem

In this section, we will establish the notation fiomage
interpolation used throughout the paper. Supposenwage is
defined over some rectangl€ [ 2. Let the function
f :Q — Obe our ideal continuous image.

sense, we can think dfas being “reality” andQ as our

Uy (% Y) =Cs5 (X Y f(XYy), (Xxy)0Q 1)

whereC denotes the Dirac comb:

Coxsy (X Y) = D O(KSX,18y),  (xy)OO%  (2)

k,10Z

The goal of image interpolation is to produce aageu at
a different resolutiordxxdy". For simplicity, we will assume
that the Euclidean coordinates are scaled by tine $actorK:

U Y) =Coy (XN FXY), (402 @

Given only the imageu,, we will have to devise some
reconstruction of at the pixel values specified by this new
resolution. We will refer t&K as our zoom or magnification
factor. Obviously, ifK = 1 we trivially recovel,.The image

Upis upsampled ifK 1 1 and downsampled iK | 1. In this
paper, we will focus on the upsampling case whert 1 is
an integer.

Let Q, [0 Q denote the lattice induced by (3) for a fixed
zoomK. Note that the lattice of the original imaggin (2) is
Q,. Also note that for infinite magnification we obtain

Q, 0Q as K - . For computation purposes, we can

shift the lattices to the positive integers. Sahié observed
imageup is anmx nimage,

Q, =[12...,Km|x[12...,Kn], KDOZ,. (@

Many interpolation techniques impose the constraint
Q, Q. In this case, only a subset of the pixelsCy
needs to be determined and the interpolation pnolblecomes
a version of the inpainting problem.

Given the notation above, we can state the image
interpolation problem succinctly: Given a low-rag@n

image U,:Q, - O and a zoomK 11, find a high-

resolution imageu:€Q, — . Obviously, this is an ill-
posed problem. We need to impose assumptions on the
reconstruction of in equation (3). The choice of interpolation
technique depends on the choice of assumptionother
words, we need a mathematical understanding of what
constitutes our perception of “realitf/”

Interpolation methods ffer in their mathematical descrip-
tion of a “good” interpolated image. Although itdifficult to

In an abStra(iIompare methods and judge their output, [10] prep&sbasic

criteria for a good interpolation method. The fBsare visual

“viewing window”. Our observed imagel, is a discrete properties of the interpolated image, the lastdsrmputational
sampling off at equally spaced points in the plane. If weroperty of the interpolation method.

suppose the resolution of isOX X Y, we can express, by

1) Geometric Invariance: The interpolation methdubudd




preserve the geometry and relative sizes of objectn
image. That is, the subject matter should not changler
interpolation.

2) Contrast Invariance: The method should presgredumi-
nance values of objects in an image and the ovesatrast
of the image.

3) Noise: The method should not add noise or aihi#facts to
the image, such as ringing artifacts near the baries

4) Edge Preservation: The method should presergesednd
boundaries, sharpening them where possible.

5) Aliasing: The method should not produce jagged o
“staircase” edges.

6) Texture Preservation: The method should not tdor
smooth textured regions.

7) Over-smoothing: The method should not produceesia
rable piecewise constant or blocky regions.

8) Application Awareness: The method should proceseilts
appropriate to the type of image and order of reswi.
For example, the interpolated results should appesdlis-
tic for photographic images, but for medical imagdles
results should have crisp edges and high contlaghe
interpolation is for general images, the methodukhde
independent of the type of image.

9) Sensitivity to Parameters: The method should bettoo
sensitive to internal parameters that may vary fiorage
to image.

Of course, these are qualitative and somewhat sliNge
criteria. We unlike [10], do not hope to develomathemati-
cal model of image interpolation and error analyisig simply
apply the most efficient method for our developmdnt a
sense, the method employed in this paper presenttteema-
tical model of these visual criteria.

B.Linear Interpolation Filters
The simplest approach is to assume that equation (3) is
reconstructed by a convolution kerngl: 0% -~ O where

.[¢(X, y)dydx=1. Then we can approximat®y

f=u*¢. (5)

Substituting this into (3) gives rise to a gendirsar inter-
polation filter

UXY) =Coy OV AXY), (6Y)DQ. ©

The simplest linear filters are the bilinear andubic inter-
polation, which assume the pixel values can beofially to
linear and cubic functions, respectively [10]. Adorwith
simple nearest neighbor interpolation, these twer§lare the
most common interpolation schemes in commercicivsoé.
These methods are easy to code as matrix multijplicaofu,.
However, an image contains edges and texturehgrotords  discontinuities. So the assumptions that pixel egsllocally fit

a polynomial function will produce undesirable hsuThe

Fig.3: Part of Lena image down-sampled and thesamppled by
factor K = 16. Top: Original, Second: Nearest Néigh Third:
Bilinear, and Down: Bicubic.



bilinear and bicubic interpolation methods [10] miagrodu-
ced blurring, create ringing artifacts, and prodacgagged
aliasing effect along edges (see Fig.3). The bigrieffects
arise from the fact that the methods compute aheijave-
rage of nearby pixels, just as in Gaussian blurfiige aliasing
effects arise because the linear filters do not takecionside-
ration the presence of edges or how to reconstneact.

Other linear interpolation filters include quadra@om, the
B-spline method, and zero-padding. But these schgmmu-
ce the same undesirabléfexts as the bilinear and bicubic

methods, as mentioned in [10dlinear filters dffer in the

choice of @, which essentially determine show to compute the

weighted average of nearby pixels. While this isaural
interpolation scheme for general data sets, thiotsnecessa-

processing and the Mumford-Shah energy has gederate
dozens, if not hundreds, of research papers. Hawghese
methods have a number of disadvantages to its mgita-
tion, reason, we choose a configuration basedraatiinter-
polation.The main disadvantages are:

1. Their hard coding

2. They depend heavily on initial conditions

3. Their high computational complexity

4. Their visual quality is not superior to linear irgelation,
except for high levels of downsampling/upsamplinith
automatically means a high rate of compressionftleco
pression.

In the latter case, we use a convolutive mask Alitd en-

rily appropriate fovisualdata. In order to improve upon thesghance the edges, as discussed in the next section.

linear filters, we need to consider interpolationttrods that
some how quantify and preserve visual information.

C.Which Methods to Consider?

This section is organized into four parts, for #dreunders-
tanding of the concepts:

SUPERRESOLUTIONSCHEME FOR COMPRESSION

Generally speaking, mathematical approaches to émag a super-resolution vs Deblurring

processing can be divided into five categories:

1. Partial-Differential Equation (PDE)-Based Metho(k.g.
heat diffusion, Perona-Malik, Navier-Stokes, ancameur-
vature).

2. Variations of Energy (e.g. Total Variation, Mwrd-Shah,
active contours)

3. Multiscale Analysis (e.g. wavelets, Fourier gae, Gabor
analysis, Laplacian pyramids)

4. Machine Learning (e.g. unsupervised learningg daning,
Markov networks)

5. Statistical / Probabilistic Methods (e.g. Bagesinference,
Natural Scene Statistics, pattern theory)

We are trying to describe the field in broad terimg,not to
rank or pigeonhole work in computer vision. Indeethny
techniques such as TV-wavelets inpainting certaitdynot fit
into one category. Also, these method€eatiat the mathema-
tical level, but not necessarily at the conceptieakl. For
example, some versions of the TV energy can benmideid by
solving a PDE or by optimizing a variation of energ

In our attempt to survey recent work in image iptdation
and also display the variety of mathematics used, will
highlight one method from each of the five categofi®]

1. A PDE-Based Approach: anisotropic he#fusiion

2. A Variation of Energy Approach: Mumford-Shah émqting

3. A Multiscale Approach: wavelet-based interpalati

4. A Machine Learning Approach: LLE-based neighkar-
beddings

5. A Statistical Approach: NL-means interpolation

These methods are, in some sense, representatitiee of
mathematical approaches to the image interpolagtiailem
and, in a larger sense, to the field of image psiogs For
example, the heat equation is the most studied PDBage

B. Compression vs Super-compression,
C. Deduction of the mask
D. Applications

A. Super-resolution vs Deblurring:

As we saw in Section I, there is much confusiomvkeh the
concepts of super-resolution and deblurring in faigimage
Processing [15, 16]. We are going to establish h&cerigo-
rous definitions for the purpose of eliminatingstibbnfusion.

We say that a process is super-resolution if itoess the
sharpness of an image involving an increase inréselution
of the sam¢l-5, 17-19], see Appendix.

We say that a process is deblurring if it restottes sharp-
ness of an image not involving an increase in teolution of
the same. This process is applied when the imagebss
suffers an aberration called bljit5, 16] which comes from a
high relative speed of the object in focus in lielatto the
camera, fast opening and closing the shutter, etc.

We consider important to mention that both processm
involve each other as part of the process of impmihe
sharpness of the image. In fact, we can understanduper-
resolution as a process of increasing the resoldtitowed by
a restoration of the edges by a deblurring proceaghe other
hand, previously established definitions are funelatad to
understanding what follows.

B. Compression vs Super-compression:

We define compression as the process reduces #ragey
number of bit-per-pixel (bpp) of an image. In Fg.we repre-
sent the set of bit-planes in which decomposesag gr color
image. As seen in Fig. 4, the compression process ot
alter the image size [15, 16].
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Fig.4: Compression.

Instead, we define supercompression as the proedases
the average number of bit-per-pixel (bpp) of andgmafter
downsizing. The size reduction process is perforinedown-
sampling, which takes shrinkage in rows and colymiithiout
obligation to respect the aspect ratio (16:9).dct,fforISDB-
Tb (Integrated Services Digital Broadcasting) BranilBigital TV
System we use 5:1 as compression rate over thmarigpmpression
of the system, which uses H.264 as video compnestandard [20].

Shrinkage of frame:
reduction in the
number of pixels
by rows and
columns
(downsampling)

Several
- bit-planes
).
//
< f Average
l 7J # reduction
/  inbpp

Fig.5: Supercompression.

In transmitter we have three steps:
1. Video slicing: frame-by-frame

2. Downsampling

3. Video reassembling

When we saywe increase the standard compression 5 timeand in receiver inside set-top-box we have foupste

this means that we move from a resolution of 19P8%1
(Full-High Definition: Full-HD) to another 5 timewer of
720x576 (Standard Definition: SD). The standarcegidom-
pression H.264 is not affected by the supercomjmes#\s
discussed in Sub-Section D, supercompression ejuiini-
mal equipment at the transmitter and the reverseegpiure to
supercompression in the receiver (set-top-box). [Ribwever,
the unavailability of the latter, the system is patible, since
the receiver will send the SD signal to the Liguisplay
Crystal (LCD) TV, which naturally made upsamplingvaus-
ly changing the aspect ratio, as when a Full-HD LTWD
receive a SD signal. In Fig. 5, we represent theokbit-pla-
nes in which decomposes a gray or color image.

As discussed in Sub-Section D, our supercompregsion
cedure consists in two parts spread in transnattdrreceiver.

1. Receiver of streaming/H.264
2.H.264"

3. Upsampling

4. Deblurring

In our case, the downsampling and upsampling i® dath
bilinear interpolation, while the deblurring is doby a bidi-
mensional convolutive mask of NxN pixels, which reslka
rafter over the upsampled (blurred) image. The mpatars of
this squared mask (where N is odd) are criticistefore, the
such parameters must be calculated and adjustdd tetil
accuracy.

In the next section, we will proceed to deductnieesk and
set the optimal relationship between its parameteater we
will proceed to adjust them via a Genetic Algoritf2a].



C. Deduction of the mask:

Based on the last section, the single frame isveyeal after
suffering a pair of processes: downsampling andhmnpéing,
see left side of Fig.6. In this figure:

X means original single frame.

Y. means recovered (blurred) single frame.

My means square mask of NxN pixels (where N is odd).
This mask is known as a blurred mask, smaogtbpe-
rator or Point Spread Function (PSF) [1].

Sub-indext meang-iteration.

I means downsampling.
1 means upsampling.

downsampling th Xt
\l/ /]\ >

upsampling

Xt
—

Y,
M, =>

>

Fig.6: Downsampling/upsampling as a blurred mask.

In these processes (and 1 ), the single frame is affected

by a space/time invariant blur, we which inter@setthe result
of the action of a bidimensional convolution betwéee origi-
nal single frame and a mask known in Digital Imd&gy®-
cessing as a mask of mean filtering. The idea amiidtering
is simply to replace each pixel value in an imadgé the mean
(Caverage") value of its neighbors, including fts€his has the
effect of eliminating pixel values which are unreggntative of
their surroundings. Mean filtering is usually thbugf as a
convolution filter. Like other convolutions it iabed around a
kernel, which represents the shape and size ohdighbor-
hood to be sampled when calculating the mean. Cit&x3
square kernel is used, although larger kernels Bx§ squa-
res) can be used for more severe smoothing. (Kateatsmall
kernel can be applied more than once in order tmlyre a
similar but not identical effect as a single pasthwa large
kernel). In Fig.7, we consider the most generaécém NxN
kernel, always with odd N, where:

1
N xN

¢= @)

Computing the straightforward convolution of an gea
with this kernel carries out the mean filtering qess.

On the basis of the above, we need an estimatcver
the single frame of the processes affecting it.nlHer an
image affected by a bidimensional convolution vetmask as
Fig.7, we deduce that the best estimator is a @ohsflodel
Kalman'’s filter [23].

The set of equations reflecting the above model loan
divided into two stages: the model and the estinma(®).

(P LR R ] (P (P (P ee e (P
(P LR ] (P (P (P a8 (P
(P LR ] (P (P (P [N ] (P
(P LR ] (P (P (P [N ] (P
(P LR ] (P (P (P [N ] (P

Fig.7: NxN averaging kernel often used in measefiltg.

Based on Fig.8, wher& means unitary delay for each ele-
ment of single fram&.., , we have:

Model

Xt+1 = Xt (8)
Yo =M, OX, 9
Wherel] means bidimensional convolution.

Estimator:

X = X, +Kxg, (10)
K =kx| (Kalman’s gain) (11)
& =Y, _YAt (12)
Y, =M, 0X, (13)
R=0-kx)xR =0-k)xR (14)

Wherel means identity matrix, ancB<2 is a constant para-
meter to adjust. Therefore,

limP =0

too

(15)

Being O the null matrix (all its elements equal to zerand
originally,

P =Elexg ) (16)

WhereE{*} represents the mathematical expectation of “s”.

On the other hand, the computational implementatifotie
above set of equations involves the use of foutede®r's
plus a strict control of the stability of the Eq.ftdm restrict-
ing the possible values d& i.e., only it is possible to use
0<k<2.
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Fig.8: Constant Model Kalman’s Filter.
Fig.9: Deblurring masm ;.
Therefore, it is much more efficient to implementts fil-
tering through a simple bidimensional mask convofyteli-
minating the predictor form of Eq.10, which allomsich more G
X, Y, X,

efficient implementations using - for example -anwolution
—> M, —> M, —>

through the Fast Fourier Transform (FFT) [15, 16]conse-
Fig.10: New and simplified model of deblurring.

guence, we need deduce such mask. If we replack3 Hq.
Eqg.12, we have,

£ =Y,-M,OX, 7)

deductingN from Eq.20.

The mentioned pair serves of initial population fbe
Genetic Algorithm [22] of Fig.11, where the pair dalled
chromosome, and andg are called genes. The metric for the
adjustment is the Mean Squared Error (MSE), whsatheifined

Reagrouping terms of Eq.18, and remembering a mofdel in the next section [15, 16]. . o
low noise and linear space and time invariant blgr have, On the other hand, the employed Genetic Algoritarmom-
posed of three big modules:

o _ a) Scoring,
Xt+1 =M d 0 Yt (19) b) Crossover Operator, and
¢) Mutation Operator

Now, we replace Eqgs. 11 and 17 inside Eq.10, oioigin

Xy = X, +kx1 x(Y, =M, OX,) (18)

WhereMy is a mask as shown in Fig.9, athd following rela-
tionships to consider are very important, The first consists of the following submodules:

a.l) Set-point where the error pixel-by-pixel asise

(N 2 - xa+ =1, (for deblurring) (20) a.2) The MSE calculation with the error pixel-byi
2 _ ) a.3) Sorting from minimum to maximum MSE
(N"-Dxa+ =0, (for edge detection) (21)  a.4) Genocide Operator eliminates the chromosoritas w

biggest MSE, i.e., there are a fixed nunddiexhromo-

Thus, a new and simplified model of deblurring appeon
the scene, see Fig.10, whase< 0 and 8 > 1. We need to
establish precisely both parameters, then, therdvews possi-
ble ways forward:

somes that survive per cycle, the fittestttfixed
number is a design parameter of the Geidgiarithm.

The Crossover Operator (or Mating Operator) croskes

parent chromosomes (selected randomly) generatmgson
chromosomes, which will be better and/or worse ttzgir
parents [22].

1.Choose N (integer, positive, odd and small), ghd 1
(and arbitrarily less than 2Yhen ais derived from
Eq.20.

2. Start with arbitrary values ofr and £ (about certain
recommendations, e.g., -Osla<0and 1< 8 <2) and
generating a random population of the pairf], and

The Mutation Operator must have a low frequencgation
for the purpose of not disturbing the nature ofgpecies, i.e.,
skip to solve another problem [22].
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D. Applications:

We present two main applications of video compoasan
real time for Digital TV, according to standard IBOb [24].

In the first,we move from a resolution of 1920x1080 Full-
HD to another 5 times lower of 720x576 SD. As weehsaid @

HD-SDI: 1080x1920

before, the standard video compression H.264 isaffetted
by the supercompression.
The Fig.12 shows a diagram of the encoder withethre

modules embedded into GPGPU cards. Quadro GPU
(video slicing:

frame-by-frame)

Tesla 2050
(donwsampling)

Quadro GPU

(video reassembling)

.

HD-SDI: 1080x1920

video slicing: frame-by-frame SD-SDI: 576x720

L X

From 1080x1920 to 576x720

(downsampling)
- for video reassembling, respectively. The downsargpé im-
plemented on a Tesla 250 [25]. Moreover, in Fig.13:

GPGPU Fig.13: Encoder implementation with GPGPUs.

video reassembling
TX means transmitter

AAC “Advanced Audio Coding”, and it is the compriess
SD-SDI: 576x720 audio format employed for ISDB-Th [24].

On the other hand, Fig.14 shows a diagram of tleeadkr
implemented inside a set-top-box (STB). So thathé& STB
has the superdecompression and depending on tbkities
of the LCD TV, we obtain resolutions of High Defioh (HD)
720x1280 or Full-HD 1080x1920. However, if the Sh#sn't

Fig.12: Encoder. the superdecompression, the system must be corepatibre-
fore we obtain only SD 576x720.

Fig.13 shows in detail the employed technologytferreal ~ The Fig.15 shows the Super-Resolution Module (SRM)
implementation of Fig.12, which consists in two @uaGPUs used inside STB of Fig.14, which includes upsangplamd
[25] the first for video slicing. frame-by-framencithe second deblurring, thus restoring the original resolution.




SD: 576x720 (streaming/H.264)

H.264
1 set-top-box (STB) :
Algorithm 37"
no @ yes
no
SRM [srum]
Rest of STB

functionalities

SD: 576x720

HD: 720x1280

Full-HD: 1080x1920
Fig.14: Decoder.

Fig.16 represents the real implementation of Fig.itd
which, we can see, the set-top-box used by UNTae#,deve-
loped by Dixar Inc [30]. This STB works equally twit
Terrestrial Digital TV, IPTV, WebTV, 3DTV and Digit
Cinema. Besi-des, this STB has camera and motingosg,
which can be used as interactive gaming platform.

Actually, we are working on an integrated circuwitip) [26]
to replace the current GPGPU inside the STB, miimgi the
power consumption and the size of this [21, 30].

Finally, the second application of this technolqygsented
here is shows in Fig.17, where we use a mobile @hmith
High-Definition Multimedia Interface (HDMI) videout as a
receptor.

upsampling

L 2

deblurring

Fig.15: Super-resolution Module (SRM).

Fig.16: Set-top-box of Dixar Inc.




IV. METRICS

A.Data Compression Ratio (CR)

Data compression ratio, also known as compressiovep
is a computer-science term used to quantify theatah in
data-representation size produced by a data cosipnesalgo-
rithm. The data compression ratio is analogousé¢opthysical
compression ratio used to measure physical conipresd
H.264 substances, and is defined in the same way, astirebet-

’ ween thauncompressed sizand thecompressed siZé5, 16]:

Mobile phone with HDMI video out
one-seg/streaming/H.264

set-top-box

Uncompressd Size
R= , (22)
Compresse&ize

A Thus a representation that compresses a 10MBofiMB
Rest of STB has a compression ratio of 10/2 = 5, often notaedan
functionalities explicit ratio, 5:1 (read “five to one"), or as enplicit ratio,
- Ful‘liHD LCD 5_X. Note that this formulation a_ppli(_es equally fu_:mmpres-
sion, where the uncompressed size is that of tiggnat; and
for decompression, where the uncompressed sitatif the
reproduction.

B.Bit-per-pixel (bpp)
The "bits per pixel" refers to the sum of thts lin all three
color channels and represents the sum colors alaié each

pixel before compressiodnp%c). However, as a compression

metric, the bits-per-pixel refers to the averagehefbits in all
three color channels, after of compression pro(:bppac).

Fig.17: Mobile phone as HD or Full-HD receptor. Compresse®ize bppbc
bpp = —xbpp =—"% (23)
As shows in Fig.17, we take the HDMI video out, anel ac  Uncompresal Size ¢ CR
introduce it in the STB. Depending on the resohutaf the ) _ ]
LCD TV we obtain HD o Full-HD resolutions. Besides, bpp is also defined as
The original resolution of the mobile phone emplbyie
Low Definition (LD) 320x2400ne-Seglone of 13 segments | _ Numbeof codedits (24)

that form the ISDB-T norm, see Fig.18). In thisesake addi- ploac Numbelof pixels
tional compression rate of STB on H.264 is 27:1.[21

C.Mean Absolute Error (MAE)

[SDB-T channel, segment and program allocation . .
The mean absolute error is a quantity usedeasore how

UHF band: 50 charnels

MMHz @ime wime eswe oo e e 70Mi close forecasts or predictions are to the evertuatomes.
e | tae | e \) Loown | s1en | c2en The mean absolute error (MAE) is given by
|
(5,617 carrers / ch.)
1 NR-INC-1 R
MAE= > oy ”X(nr,nc)—x(nr,nc)” (25)
13 segments————————» NRxN nr = Onc =0

U ‘ g which for two NRxNC (rows-by-columns) monochrome ima-
430KEEE gt b 5.57 MHz bandwiddy /cl,  #0KHz smattand gesX andX , where the second one of the images is conside-

red a decompressed approximation of the othereofittst one.

428 1Hz bandswridta £ segroent

(Tlax. 432 carviers/ segroent)

D. Mean Squared Error (MSE)

The mean square error or MSE in Image Compesisi
Fig.18: Detail of 13 segments inside ISDB-T channel one of many ways to quantify the difference betwaerorigi-

lseg pregram (sngle segment)



nal image and the true value of the quantity belegom-

SC: Super-compression

pressed image, which for twbIRxXNC (rows-by-columns) SR: Super-resolution

monochrome imageX andX , where the second one of the
images is considered a decompressed approximafidheo
other is defined as:

A. Group 1:Main characteristics of employed image:
File = angelina.bmp

Color = yes

1 NR-INC-1
NRxNC 2 z

nr=0nc=0

MSE=

Hx(nr,nc) - >Z(nr,nc)”2 (26)

Size = 1920-by-1080 pixels
Original bpp = 24

Experiment 1: JPEG vs SC (JPEG+SR)

JPEG: See Table I, column JPEG, and Fig.1% @®m top).

E.Peak Signal-To-Noise Ratio (PSNR)

The phrase peak signal-to-noise ratio, oftelrebated
PSNR, is an engineering term for the ratio betwées
maximum possible power of a signal and the power
corrupting noise that affects the fidelity of itspresentation.
Because many signals have a very wide dynamic rdfgeR
is usually expressed in terms of the logarithmiciloel scale.
The PSNR is most commonly used as a measure afyqaél
reconstruction in image compression, etc [15]s Iniost easily
defined via the mean squared error (MSE), so, BN is

defined as [16]:

PSNR=10I (MAX>2<) 201 (MAXX) (27)
(0] —) = (0]
%0 vse 90" ImsE

Here, MAXx is the maximum pixel value of the image.
When the pixels are represented using 8 bits peplea this is
256. More generally, when samples are represensiug u
linear pulse code modulation (PCM) with B bits pample
(bps), maximum possible value MAXy is 2-1.

Encoder:
1. From BMP (24 bpp, 1920x1080)
2. To JPEG (0.6853 bpp, 1920x1080)

of Channel/storage

Decoder:
1. From JPEG (0.6853 bpp, 1920x1080)
2. To BMP(24 bpp, 1920x1080)

SC (JPEG+SR): See Table I, column SC (JPEG+SR), and

Fig.19'tdrom top).

Encoder:

1. BMP (24 bpp, 1920x1080)

2. Downsampling (24 bpp, 720x576)

3. JPEG (0.1445 bpp, 720x576)
Channel/storage
Decoder:

1. JPEG (0.1445 bpp, 720x576)

2. Upsampling (0.4323 bpp, 1920x1080)

3. Deblurring (0.5004 bpp, 1920x1080)

4. BMP (24 bpp, 1920x1080)

Experiment 2: JPEG2000 vs SC (JPEG2000+SR)

JPEG2000: See Table I, column JPEG2000, and Fig.19 (4

For color images with three red-green-blue (RGBlues
per pixel, the definition of PSNR is the same exdbp MSE
is the sum over all squared value differences diily image
size and by three [15, 16].

Typical values for the PSNR in lossy image and eide
compression are between 30 and 50 dB, where higetter.

V.SIMULATIONS
The simulations are organized in four experimes¢para-

from top).

Encoder:

1. From BMP (24 bpp, 1920x1080)

2. To JPEG2000 (2.6285 bpp, 1920x1080)
Channel/storage
Decoder:

1. From JPEG2000 (2.6285 bpp, 1920x1080)

2. To BMP (24 bpp, 1920x1080)

SC (JPEG2000+SR):See Table II, column SC (JPEG2000+

ted in two groups: still images (for obvious reasdmowever,
identical results were achieved in video, HDTV dbigjital

Cinema) by color and gray. All experiments inclumgcula-
tions of MAE, MSE, PSNR, bpp and CR.

All these experiments involve the comparison betwtde

SR), and Figy(@lown).
Encoder:
1. BMP (24 bpp, 1920x1080)
2. Downsampling (24 bpp, 720x576)
3. JPEG2000 (0.8148 bpp, 720x576)

Channel/storage

use of JPEG vs SC (JPEG+SR), and JPEG2000 vs SCDecoder:

(JPEG2000+SR) for still color and gray images, athbcases
over a BMP file (which doesn’t have compressiomaw data
mode), where the used acronym means:

BMP: BitMap file format [27]
JPEG: Joint Picture Group [27]
JPEG2000: JPEG with wavelets [28]

1. JPEG2000 (0.8148 bpp, 720x576)

2. Upsampling (1.3903 bpp, 1920x1080)
3. Deblurring (2.2397 bpp, 1920x1080)
4. BMP (24 bpp, 1920x1080)

The following tables show the metrics vs thgakithms for
both cases, i.e., JPEG and JPEG2000 vs Supercaigures



TABLE |
ANGELINA (COLOR, 24 BPP, 192X 1080):JPEGvS SC(JPEG+SR)

Metrics JPEG SC (JPEG+SR)

MAE 0.5333 1.0009

MSE 2.3137 7.6264

PSNR 43.6693 38.2393

bpp 0.6853 0.1445

CR 35.0210 166.1154

TABLE Il
ANGELINA (COLOR, 24 BPP, 1920x1080):JPEG2000/s SC(JPEG2000+SR)

Metrics JPEG2000 SC (JPEG2000+SR)

MAE 0.044¢ 0.296:

MSE 0.047: 1.138¢

PSNR 61.3884 47.5673

bpp 2.6285 0.8148

CR 9.1307 29.4538

B. Group 2:Main characteristics of employed image:
File = lena.bmp
Color = gray
Size = 512-by-512 pixels
Original bpp =8

Experiment 3: JPEG vs SC (JPEG+SR)
JPEG: See Table IIl, column JPEG, and Fig.20 (2om
top).
Encoder:
1. From BMP (8 bpp, 512x512)
2. To JPEG (0.8953 bpp, 512x512)
Channel/storage
Decoder:
1. From JPEG (0.8953 bpp, 512x512)
2. To BMP(24 bpp, 512x512)

SC (JPEG+SR): See Table lll, column SC (JPEG+SR), and
Fig.20'tdrom top).
Encoder:
1. BMP (8 bpp, 512x512)
2. Downsampling (8 bpp, 256x256)
3. JPEG (0.2957 bpp, 256x256)
Channel/storage
Decoder:
1. JPEG (0.2957 bpp, 256x256)
2. Upsampling (0.6502 bpp, 512x512)
3. Deblurring (0.7727 bpp, 512x512)
4. BMP (8 bpp, 512x512)

Experiment 4; JPEG2000 vs SC (JPEG2000+SR)
JPEG2000: See Table IV, column JPEG2000, and Fig.20 (4
from top).
Encoder:
1. From BMP (8 bpp, 512x512)
2. To JPEG2000 (3.7242 bpp, 512x512)
Channel/storage
Decoder:
1. From JPEG2000 (3.7242 bpp, 512x512)
2. To BMP (8 bpp, 512x512)

Fig.19: First (top) original image, second (codad decoded with
JPEG), third (coded and decoded with JPEG+Supenessipn),
fourth (coded and decoded with JPEG2000), fifthagalocoded and

decoded with JPEG2000+Supercompression).



SC (JPEG2000+SR):See Table 1V, column SC (JPEG2000+
SR), and Figy(@own).

Encoder:
1. BMP (8 bpp, 512x512)
2. Downsampling (8 bpp, 256x256)
3. JPEG2000 (1.0066 bpp, 256x256)
Channel/storage
Decoder:
1. JPEG2000 (1.0066 bpp, 256x256)
2. Upsampling (1.6421 bpp, 512x512)
3. Deblurring (2.4230 bpp, 512x512)
4. BMP (8 bpp, 512x512)

The following tables show the metrics vs thgadkithms for
both cases, i.e., JPEG and JPEG2000 vs Supercigores

TABLE Ill
LENA (GRAY, 8 BPR, 512x512):JPEGVS SC(JPEG+SR)
Metrics JPEG SC (JPEG+SR)
MAE 1.0785 2.0243
MSE 4.4363 14.6230
PSNR 41.6606 36.4804
bpr 0.895: 0.2957
CR 8.935¢ 27.052¢
TABLE IV
LENA (GRAY, 8 BPR, 512¢512):JPEG200&/s SC(JPEG2000+SR)
Metrics JPEG2000 SC (JPEG2000+SR)
MAE 0.0902 1.5312
MSE 0.0905 9.2596
PSNR 58.5647 38.4649
bpp 3.7242 1.0066
CR 2.1481 7.9475

Finally, all techniques were previously implemented
MATLAB® R2010b (Mathworks, Natick, MA) [29] on a
Notebook with an Intel® Core(TM) i5 CPU M 520 @ @.4
GHz processors and 2 GB RAM on Microsoft® Windov& 7
32 bits, and then in OpenCL and CUDA® of NVIDIA®HPR
on NVIDIA® Quadro 6000 + Tesla 2050 + Quadro 6000
GPUs for encoder, and NVIDIA® GTX285 GPU inside STB
of Dixar Inc [30] for decoder, as shown in Fig.16.

VI. CONCLUSION

A. Group 1:

Experiment 1: JPEG vs SC (JPEG+SR)

In this experiment SC (JPEG+SR) has MAE, M®# a
PSNR with practically the same order of magnitudantJPEG
alone, however, bpp is five times lower, at the esdime, CR
is five times higher, see Table I.

As shown in Fig.19, the second (coded and dstedth
JPEG) and the third (coded and decoded with JPE@efSu
compression) from the top, have the same look-aetl-dnd

image quality than the top, i.e., original imageAnDelina. Fig.20: First (top) original image, second (codad decoded with
JPEG), third (coded and decoded with JPEG+Supenassipn),
Experiment 2: JPEG2000 vs SC (JPEG2000+SR) fourth (coded and decoded with JPEG2000), fifthajocoded and

We make similar considerations for this experimezgar- decoded with JPEG2000+Supercompression).



ding to the last experiment, see Table Il and Rigifburth
coded and decoded with JPEG2000 alone, and fifle¢@nd
decoded with JPEG2000+Supercompression), howelvere t
is a big difference between JPEG and JPEG-2000rpress
this type of image (compare bpp and CR of Tabled i&).

B. Group 2:

Experiment 3: JPEG vs SC (JPEG+SR)

In this experiment SC (JPEG+SR) has MAE, MSE andRS
with practically the same order of magnitude thB&EG alo-
ne, however, bpp is five times lower, at the saime,tCR is
five times higher, see Table Ill, idem Experiment 1

As shown in Fig.20, the second (coded and decadtd
JPEG) and the third (coded and decoded with JPE@efSu
compression) from the top, have the same look-aetl-dnd
image quality than the top, i.e., original imagd_eha.

Experiment 4: JPEG2000 vs SC (JPEG2000+SR)
Identical considerations than Experiment 2 are s&any,
see Table IV and Fig.20, with the same conclusabmut the

where the first term is called ddiscrepancy”, F(x) is the
stabilizeranda > 0 is thecoefficient of regularizatiof3].

The most popular and universal stabilizer is thkh@hov
functional. It is calculated as a grid approximatiof the
functional:

F(9=ax;

(31)

andn = 2,p = 2. For eacln > 0 the solutiorx is correct: it is
unique, defined for everyand continuously depends gnWe
can write the Euler equation for this case:
(ATA+X)x=A"y (32)
But in this case the algorithm becomes linear beeals
the solution of the system of linear equations. t8is, method
inherits drawbacks of linear interpolation algamith and we

need to find more adaptive stabilizer for imagenagling.
We will consider Total Variation (TV) and Bilaterdlv

difference between JPEG and JPEG-2000 to comphess {BTV) stabilizers [3], which are working ih norm f = 1,

type of image (compare bpp and CR of Table Il Bfid

C. For both groups:

We used Texture Memory inside STB [21] GPGPU to
computational efficient implementation of the biginsional
convolutive mask of deblurring module, allowing tasreach
TV times, i.e., a frame every 40 milliseconds.

APPENDIX

Super-resolution method is typically used to res@righ-
resolution image from several low-resolution nogyserva-
tions [3]. In this paper, we consider the interpiola of a sin-
gle image. So, we will formulate the problem as

AX =

y (28)
wherex is the unknown high-resolution image (represeated
a vector of pixel valuesy,is the known low-resolution image,
andA is the downscaling operator typically consistirfigieci-
mationD following a low-pass filterindd:
A=DH (29)

The choice of the low-pass filtering operator defseon a
point spread function of the imaging system thaidpced the
low resolution image. If the imaging system is umkn we
will assume that operatét is a simple box filter.

A. Regularization
The EQ.28 is generally ill-posed and a small chavfgihe

input vectory can cause a huge change of the resulting vector

x. For the Eq.28, the regularized solution is found as

x = argmin| Ax- y{” + o F(x) (30)

p=1):
V(9 =|K, @)
where [IX is the gradient operator (its modulus),
st=p
BTV(x = Y, v"|x-S54, (34)
st=-p

where Sf and S; are shift operators alongandy axes bys

andt pixels respectivelyy = 0.8.
B. Inverse iterations

To solve the equation (30) with a stabilizer (34 iterative
steepest-descent method can be used:

X, =%, —B{ HTD"sign(DHx~y) +

ra 3, Y0 -5 signsis 9}

st=-p

(39)

Z = sign xis a vector with per-element applied sign function;
D' is an up-scaling operation. B in (29) is the simplest
decimation operator that takes evérsh pixel, D is the up-
scaling operator by zero insertion.Hfin (29) is a symmetric
filtering, thenH" is equal toH. X, is the initial approximation
of the high resolution image.
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