
 

 

  
Abstract—Super-resolution is nowadays used for a high-resolu-

tion image produced from several low-resolution noisy frames. In this 
work, we consider the problem of high-quality interpolation of a 
single noise-free image. Such images may come from different sour-
ces, i.e., they may be frames of videos, individual pictures, etc. On 
the other hand, in the encoder we apply a downsampling via bidimen-
sional interpolation of each frame, and in the decoder we apply a 
upsampling by which we restore the original size of the image. If the 
compression ratio is very high, then we use a convolutive mask that 
restores the edges, eliminating the blur. Finally, both, the encoder 
and the complete decoder are implemented on General-Purpose 
computation on Graphics Processing Units (GPGPU) cards. In fact, 
the mentioned mask is coded inside texture memory of a GPGPU. 
 

Keywords—General-Purpose computation on Graphics Process- 
ing Units, Image Compression, Interpolation, Super-resolution.  

I. INTRODUCTION 

IGITAL  image capture produces discrete representations of 
continuous scenes. This discretisation in both space and 

intensity is a sampling process that creates aliasing, and infor-
mation at frequencies above the Nyquist rate is lost. It is com-
mon to wish to construct a higher resolution image from a tem-
plate image or a set of images, but the aliasing and loss of fre-
quency information makes this an ill-posed (inverse) pro-blem. 

The typical solution to this problem (known in the literature 
as image super-resolution reconstruction, or simply super-
resolution) is to use an ensemble of related lower-resolution 
images. As each of these images has aliased the higher fre-
quency information slightly differently, under certain condi-
tions it is possible to “unwrap” some of the aliasing and 
reconstruct the lost higher frequencies.  

There are numerous methods [1-5] of performing super-
resolution. Many of them are computationally expensive in 
nature, but allow for complicated motion models, significant 
noise and image degradation, and other aspects that are not 
considered in this work. Given assumptions of global transla-
tional motion, low noise and linear space and time invariant 
blur due to the imaging sensor point spread function (PSF), 
image super-resolution reconstruction can be split into there 
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distinct steps: 
• Registration 
• Reconstruction/Interpolation 
• Deblurring 

 
Image registration is a technique that can be used to 

determine the relative translations between the input images. 
Generally, the desire is to do this from the contents of the 
images alone, without any prior knowledge. There are many 
different methods for performing registration [1]; however, in 
the context of image super-resolution, image registration is 
required to determine the offsets between the images with 
accuracy down to a small fraction of a pixel [1].  

Once the images have been registered, all the pixels from 
the ensemble can be combined to form a composite image. The 
resultant image is no longer sampled on a uniform rectangular 
grid, but due to global translational motion, it has a semi-
uniform structure, as can be seen in Figure 1. Reconstructing 
the image data at all points on a high resolution grid requires 
that the semi-regular data is interpolated and resampled. It is 
this interpolation problem that is addressed in this paper.  

 

 

Fig.1: Composite image exhibits a semi-uniform structure. 

 
For the full super-resolution approach, a deblurring proce-

Single frame supercompression of still images, 
video, High Definition TV and Digital Cinema       

Mario Mastriani 

D



 

 

dure can now be applied that restores the high frequencies that 
have been suppressed by the low-resolution imaging process. 
In this paper we perform this deblurring after the interpolated 
process via a convolution between the up-sampled image and a 
convolutive mask deduced specifically. 

However, the main goal of Super-Resolution (SR) methods 
–in practice– is to recover a high-resolution image from one or 
more low-resolution input images. Methods for SR can be 
broadly classified into two families of methods:  
1. The classical multi-image super-resolution, and 
2. Example-Based super-resolution. 

In the classical multi-image SR (e.g., [2] to name just a few) 
asset of low-resolution images of the same scene are taken (at 
subpixel misalignments). Each low-resolution image imposes 
asset of linear constraints on the unknown high-resolution 
intensity values. If enough low-resolution images are available 
(at subpixel shifts), then the set of equations becomes 
determined and can be solved to recover the high-resolution 
image. Practically, however, this approach is numerically 
limited only to small increases in resolution [2] (by factors 
smaller than 2). 

These limitations have lead to the development of “Exam-
ple-Based Super-Resolution” also termed “image hallucina-
tion” (see references in [2]). In example-based SR, correspon-
dences between low and high-resolution image patches are 
learned from a data base of low and high-resolution image 
pairs (usually with a relative scale factor of 2), and then 
applied to a new low-resolution image to recover its most 
likely high-resolution version. Higher SR factors have often 
been obtained by repeated applications of this process. 
Example-based SR has been shown to exceed the limits of 
classical SR. However, unlike classical SR, the high resolution 
details reconstructed (“hallucinated”) by example-based SR 
are not guaranteed to provide the true (unknown) high-resolu-
tion details. 

Sophisticated methods for image up-scaling based on lear-
ning edge models have also been proposed (e.g., [3-5]). The 
goal of these methods is to magnify (up-scale) an image while 
maintaining the sharpness of the edges and the details in the 
image. In contrast, in SR (example-based as well as classical) 
the goal is to recover new missing high-resolution details that 
are not explicitly found in any individual low-resolution image 
(details beyond the Nyquist frequency of the low-resolution 
image). In the classical SR, this high-frequency information is 
assumed to be split across multiple low-resolution images, 
implicitly found there in aliased form. In example-based SR, 
this missing high-resolution information is assumed to be 
available in the high-resolution data base patches, and learned 
from the low-res/high-res pairs of examples in the database. 

However beyond what we have said above, in this paper, we 
consider the interpolation of a single image. 
On the other hand, the rendering of lower resolution image 
data on higher resolution displays has become a very common 
task, in particular because of the increasing popularity of 
webcams, camera phones, and low-bandwidth video streaming. 
Thus, there is a strong demand for real-time, high-quality 

image magnification. In this work, we suggest to exploit the 
high performance of general-purpose computation on program-
mable graphics processing units (GPGPUs) for an original 
image magnification method. To this end, we propose a 
GPGPU-friendly algorithm for image up-sampling with edge 
restoration image interpolation, which avoids ringing artifacts, 
excessive blurring, and stair-casing of oblique edges. At the 
same time it features gray-scale invariance, is applicable to 
color images, and allows for real-time processing of full-
screen images on today’s GPGPUs [6-9]. 

The Bidimensional Interpolation is outlined in Section II, 
where we discuss the problem of interpolating visually accep-
table images at a higher resolution. We first present the inter-
polation problem and why linear interpolation filters are inade-
quate for image data. To represent the major mathematical 
approaches to image processing, we discuss and evaluate five 
different image interpolation methods. Super-resolution sche-
me for compression including linear interpolation are outlined 
in Section III. Metrics are outlined in Section IV. Simulations 
are outline in Section V. Finally, Section VI provides a conclu-
sion of the paper.  

II.  BIDIMENSIONAL INTERPOLATION 

A digital image is not an exact snapshot of reality, it is only 
a discrete approximation. This fact should be apparent to the 
average web surfer, as images commonly become blocky or 
jagged after being resized to fit the browser. The goal of image 
Interpolation is to produce acceptable images at different reso-
lutions from a single low-resolution image. The actual resolu-
tion of an image is defined as the number of pixels, but the 
effective resolution is a much harder quantity to define as it 
depends on subjective human judgment and perception. The 
goal of this section is to explore different mathematical formu-
lations of this essentially aesthetic quantity. 

The image interpolation problem goes by many names, 
depending on the application: image resizing, image up-sam-
pling/down-sampling, digital zooming, image magnification, 
resolution enhancement, etc. The term super-resolution is 
sometimes used, although in the literature this generally refers 
to producing a high-resolution image from multiple images 
such as a video sequence. If we define interpolation as “filling 
in the pixels in between,” the image interpolation problem can 
be viewed as a subset of the inpainting problem (see Figure 2). 

The applications of image interpolation range from the 
common place viewing of online images to the more sophis-
ticated magnification of satellite images. With the rise of 
consumer-based digital photography, users expect to have a 
greater control over their digital images. Digital zooming has a 
role in picking up clues and details in surveillance images and 
video. As high-definition television (HDTV) technology enters 
the marketplace, engineers are interested in fast interpolation 
algorithms for viewing traditional low-definition programs on 
HDTV. Astronomical images from rovers and probes are 
received at an extremely low transmission rate (about 40 bytes 
per second), making the transmission of high-resolution data 
infeasible [10]. In medical imaging, neurologists would like to  



 

 

 

 

 

Fig.2: Image interpolation using linear method of interp2 built-in 
MATLAB® function. Top: original image. Medium: close-up of      

eye in image. Down: interpolated image. 
 
have the ability to zoom in on specific parts of brain tomo-

graphy images. This is just a short list of applications, but the 
wide variety cautions us that our desired interpolation result 
could vary depending on the application and user. 

A. The Image Interpolation Problem 

In this section, we will establish the notation for image 
interpolation used throughout the paper. Suppose our image is 

defined over some rectangle 2ℜ⊂Ω . Let the function 

ℜ→Ω:f be our ideal continuous image. In an abstract 

sense, we can think of f as being “reality” and Ω  as our 
“viewing window”. Our observed image u0 is a discrete 
sampling of f at equally spaced points in the plane. If we 
suppose the resolution of u0 is yx δδ × , we can express u0 by 

Ω∈= ),(),,(),(),( ,0 yxyxfyxCyxu yx δδ             (1) 

 
where C denotes the Dirac comb: 
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The goal of image interpolation is to produce an image u at 

a different resolution '' yx δδ × . For simplicity, we will assume 

that the Euclidean coordinates are scaled by the same factor K: 
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Given only the image u0, we will have to devise some 

reconstruction of f at the pixel values specified by this new 
resolution. We will refer to K as our zoom or magnification 
factor. Obviously, if K = 1 we trivially recover u0 .The image 

u0 is upsampled if 1↑K  and downsampled if 1↓K . In this 

paper, we will focus on the upsampling case when 1↑K  is 
an integer. 

Let Ω⊂ΩK  denote the lattice induced by (3) for a fixed 

zoom K. Note that the lattice of the original image u0 in (2) is 

1Ω . Also note that for infinite magnification we obtain 

Ω⊂ΩK  as ∞→K . For computation purposes, we can 

shift the lattices to the positive integers. So if the observed 
image u0 is an m x n image, 

 

[ ] [ ] .,,,2,1,,2,1 +∈×=Ω ZKKnKmK KK         (4) 

 
Many interpolation techniques impose the constraint 

KΩ⊆Ω1 . In this case, only a subset of the pixels in KΩ  

needs to be determined and the interpolation problem becomes 
a version of the inpainting problem. 

Given the notation above, we can state the image 
interpolation problem succinctly: Given a low-resolution 

image ℜ→Ω10 :u  and a zoom 1↑K , find a high-

resolution image ℜ→ΩKu : . Obviously, this is an ill-

posed problem. We need to impose assumptions on the 
reconstruction of f in equation (3). The choice of interpolation 
technique depends on the choice of assumptions. In other 
words, we need a mathematical understanding of what 
constitutes our perception of “reality” f. 

Interpolation methods differ in their mathematical descrip-

tion of a “good” interpolated image. Although it is difficult to 
compare methods and judge their output, [10] proposes 9 basic 
criteria for a good interpolation method. The first 8 are visual 
properties of the interpolated image, the last is a computational 
property of the interpolation method. 
1) Geometric Invariance: The interpolation method should   



 

 

preserve the geometry and relative sizes of objects in an 
image. That is, the subject matter should not change under 
interpolation. 

2) Contrast Invariance: The method should preserve the lumi-
nance values of objects in an image and the overall contrast 
of the image. 

3) Noise: The method should not add noise or other artifacts to 
the image, such as ringing artifacts near the boundaries. 

4) Edge Preservation: The method should preserve edges and 
boundaries, sharpening them where possible. 

5) Aliasing: The method should not produce jagged or 
“staircase” edges. 

6) Texture Preservation: The method should not blur or 
smooth textured regions. 

7) Over-smoothing: The method should not produce undesi-
rable piecewise constant or blocky regions. 

8) Application Awareness: The method should produce results 
appropriate to the type of image and order of resolution. 
For example, the interpolated results should appear realis-
tic for photographic images, but for medical images the 
results should have crisp edges and high contrast. If the 
interpolation is for general images, the method should be 
independent of the type of image. 

9) Sensitivity to Parameters: The method should not be too 
sensitive to internal parameters that may vary from image 
to image. 

Of course, these are qualitative and somewhat subjective 
criteria. We unlike [10], do not hope to develop a mathemati-
cal model of image interpolation and error analysis, but simply 
apply the most efficient method for our development. In a 
sense, the method employed in this paper presents a mathema-
tical model of these visual criteria.  

B. Linear Interpolation Filters 

The simplest approach is to assume that f  in equation (3) is 

reconstructed by a convolution kernel ℜ→ℜ2:ϕ  where 

1),( =∫ dxdyyxϕ . Then we can approximate f by 

 

ϕ*0uf ≈ .                         (5) 

 
Substituting this into (3) gives rise to a general linear inter-

polation filter 
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The simplest linear filters are the bilinear and bicubic inter-

polation, which assume the pixel values can be fit locally to 
linear and cubic functions, respectively [10]. Along with 
simple nearest neighbor interpolation, these two filters are the 
most common interpolation schemes in commercial software. 
These methods are easy to code as matrix multiplications of u0. 
However, an image contains edges and texture, in other words  

 

 

 

 

Fig.3: Part of Lena image down-sampled and then up-sampled by 
factor K = 16. Top: Original, Second: Nearest Neighbor, Third: 

Bilinear, and Down: Bicubic. 
 

discontinuities. So the assumptions that pixel values locally fit 
a polynomial function will produce undesirable results. The 



 

 

bilinear and bicubic interpolation methods [10] may introdu-
ced blurring, create ringing artifacts, and produce a jagged 
aliasing effect along edges (see Fig.3). The blurring effects 
arise from the fact that the methods compute a weighted ave-
rage of nearby pixels, just as in Gaussian blurring. The aliasing 
effects arise because the linear filters do not take into conside-
ration the presence of edges or how to reconstruct them. 

Other linear interpolation filters include quadratic zoom, the 
B-spline method, and zero-padding. But these schemes produ-
ce the same undesirable effects as the bilinear and bicubic 

methods, as mentioned in [10]. Linear filters differ in the 
choice of ϕ , which essentially determine show to compute the 

weighted average of nearby pixels. While this is a natural 
interpolation scheme for general data sets, this is not necessa-
rily appropriate for visual data. In order to improve upon these 
linear filters, we need to consider interpolation methods that 
some how quantify and preserve visual information. 

C. Which Methods to Consider? 

Generally speaking, mathematical approaches to image 
processing can be divided into five categories: 
1. Partial-Differential Equation (PDE)-Based Methods (e.g.  

heat diffusion, Perona-Malik, Navier-Stokes, and mean cur-
vature). 

2. Variations of Energy (e.g. Total Variation, Mumford-Shah, 
active contours) 

3. Multiscale Analysis (e.g. wavelets, Fourier analysis, Gabor 
analysis, Laplacian pyramids) 

4. Machine Learning (e.g. unsupervised learning, data mining, 
Markov networks) 

5. Statistical / Probabilistic Methods (e.g. Bayesian inference, 
Natural Scene Statistics, pattern theory) 

 
We are trying to describe the field in broad terms, but not to 

rank or pigeonhole work in computer vision. Indeed, many 
techniques such as TV-wavelets inpainting certainly do not fit 
into one category. Also, these methods differ at the mathema-
tical level, but not necessarily at the conceptual level. For 
example, some versions of the TV energy can be minimized by 
solving a PDE or by optimizing a variation of energy. 

In our attempt to survey recent work in image interpolation 
and also display the variety of mathematics used, we will 
highlight one method from each of the five categories [10] 

 
1. A PDE-Based Approach: anisotropic heat diffusion 
2. A Variation of Energy Approach: Mumford-Shah inpainting 
3. A Multiscale Approach: wavelet-based interpolation 
4. A Machine Learning Approach: LLE-based neighbor em-

beddings 
5. A Statistical Approach: NL-means interpolation 

 
These methods are, in some sense, representative of the 

mathematical approaches to the image interpolation problem 
and, in a larger sense, to the field of image processing. For 
example, the heat equation is the most studied PDE in image 

processing and the Mumford-Shah energy has generated 
dozens, if not hundreds, of research papers. However, these 
methods have a number of disadvantages to its implementa-
tion, reason, we choose a configuration based on linear inter-
polation. The main disadvantages are: 
1. Their hard coding 
2. They depend heavily on initial conditions 
3. Their high computational complexity 
4. Their visual quality is not superior to linear interpolation, 

except for high levels of downsampling/upsampling, with 
automatically means a high rate of compression/decom-
pression. 

 
In the latter case, we use a convolutive mask [11-14] to en-

hance the edges, as discussed in the next section. 

III.  SUPER-RESOLUTION SCHEME FOR COMPRESSION  

This section is organized into four parts, for a better unders-
tanding of the concepts:  

A. Super-resolution vs Deblurring,  
B. Compression vs Super-compression,  
C.  Deduction of the mask 
D. Applications 
 

A.  Super-resolution vs Deblurring: 

As we saw in Section I, there is much confusion between the 
concepts of super-resolution and deblurring in Digital Image 
Processing [15, 16]. We are going to establish here two rigo-
rous definitions for the purpose of eliminating this confusion. 

 
We say that a process is super-resolution if it restores the 

sharpness of an image involving an increase in the resolution 
of the same [1-5, 17-19], see Appendix. 

 
We say that a process is deblurring if it restores the sharp-

ness of an image not involving an increase in the resolution of 
the same. This process is applied when the image sharpness 
suffers an aberration called blur [15, 16], which comes from a 
high relative speed of the object in focus in relation to the 
camera, fast opening and closing the shutter, etc. 

 
We consider important to mention that both processes can 

involve each other as part of the process of improving the 
sharpness of the image. In fact, we can understand the super-
resolution as a process of increasing the resolution followed by 
a restoration of the edges by a deblurring process. On the other 
hand, previously established definitions are fundamental to 
understanding what follows. 

B.  Compression vs Super-compression: 

We define compression as the process reduces the average 
number of bit-per-pixel (bpp) of an image. In Fig. 4, we repre-
sent the set of bit-planes in which decomposes a gray or color 
image. As seen in Fig. 4, the compression process does not 
alter the image size [15, 16]. 



 

 

 

Fig.4: Compression. 

 
Instead, we define supercompression as the process reduces 

the average number of bit-per-pixel (bpp) of an image after 
downsizing. The size reduction process is performed by down-
sampling, which takes shrinkage in rows and columns, without 
obligation to respect the aspect ratio (16:9). In fact, for ISDB-
Tb (Integrated Services Digital Broadcasting) Brazilian Digital TV 
System we use 5:1 as compression rate over the original compression 
of the system, which uses H.264 as video compression standard [20]. 
When we say, we increase the standard compression 5 times, 
this means that we move from a resolution of 1920x1080 
(Full-High Definition: Full-HD) to another 5 times lower of 
720x576 (Standard Definition: SD). The standard video com-
pression H.264 is not affected by the supercompression. As 
discussed in Sub-Section D, supercompression requires mini-
mal equipment at the transmitter and the reverse procedure to 
supercompression in the receiver (set-top-box) [21]. However, 
the unavailability of the latter, the system is compatible, since 
the receiver will send the SD signal to the Liquid Display 
Crystal (LCD) TV, which naturally made upsampling obvious-
ly changing the aspect ratio, as when a Full-HD LCD TV 
receive a SD signal. In Fig. 5, we represent the set of bit-pla-
nes in which decomposes a gray or color image.  

As discussed in Sub-Section D, our supercompression pro-
cedure consists in two parts spread in transmitter and receiver.  

 

Fig.5: Supercompression. 

 
In transmitter we have three steps: 
1. Video slicing: frame-by-frame 
2. Downsampling 
3. Video reassembling 
 

and in receiver inside set-top-box we have four steps: 
1. Receiver of streaming/H.264 
2. H.264-1 
3. Upsampling 
4. Deblurring 
 
In our case, the downsampling and upsampling is done with 

bilinear interpolation, while the deblurring is done by a bidi-
mensional convolutive mask of NxN pixels, which makes a 
rafter over the upsampled (blurred) image. The parameters of 
this squared mask (where N is odd) are criticals, therefore, the 
such parameters must be calculated and adjusted with total 
accuracy. 

In the next section, we will proceed to deduct the mask and 
set the optimal relationship between its parameters. Later we 
will proceed to adjust them via a Genetic Algorithm [22]. 



 

 

C.  Deduction of the mask: 

Based on the last section, the single frame is recovered after 
suffering a pair of processes: downsampling and upsampling, 
see left side of Fig.6. In this figure:                                                                    

 
X t  means original single frame. 
Y t  means recovered (blurred) single frame. 
M b  means square mask of NxN pixels (where N is odd).  
      This mask is known as a blurred mask, smoothing ope- 
      rator or Point Spread Function (PSF) [1]. 
Sub-index t means t-iteration. 

↓ means downsampling. 

↑ means upsampling. 
 
 

 
 

Fig.6: Downsampling/upsampling as a blurred mask. 
 

In these processes (↓ and ↑ ), the single frame is affected 
by a space/time invariant blur, we which interpret as the result 
of the action of a bidimensional convolution between the origi-
nal single frame and a mask known in Digital Image Pro-
cessing as a mask of mean filtering. The idea of mean filtering 
is simply to replace each pixel value in an image with the mean 
(`average') value of its neighbors, including itself. This has the 
effect of eliminating pixel values which are unrepresentative of 
their surroundings. Mean filtering is usually thought of as a 
convolution filter. Like other convolutions it is based around a 
kernel, which represents the shape and size of the neighbor-
hood to be sampled when calculating the mean. Often a 3×3 
square kernel is used, although larger kernels (e.g. 5×5 squa-
res) can be used for more severe smoothing. (Note that a small 
kernel can be applied more than once in order to produce a 
similar but not identical effect as a single pass with a large 
kernel). In Fig.7, we consider the most general case, for NxN 
kernel, always with odd N, where: 

 

NN ×
= 1ϕ                     (7) 

 
Computing the straightforward convolution of an image 

with this kernel carries out the mean filtering process. 
On the basis of the above, we need an estimator to recover 

the single frame of the processes affecting it. Then, for an 
image affected by a bidimensional convolution with a mask as 
Fig.7, we deduce that the best estimator is a Constant Model 
Kalman’s filter [23]. 

The set of equations reflecting the above model can be 
divided into two stages: the model and the estimator [23].  

 
 

Fig.7: N×N averaging kernel often used in mean filtering. 
 
 

Based on Fig.8, where ∆ means unitary delay for each ele-
ment of single frame Xt+1 , we have: 

 
Model: 

tt XX =+1                            (8) 

tbt XMY ⊗=                    (9) 

 

Where⊗ means bidimensional convolution. 
 
Estimator: 

ttt KXX ε×+=+

))

1                         (10) 

IkK ×=  (Kalman’s gain)                                    (11) 

ttt YY
)

−=ε                                       (12) 

tbt XMY
))

⊗=                     (13) 

−− ×−=××−= ttt PkPIkIP )1()(                       (14)  

         
Where I means identity matrix, and 0<k<2 is a constant para-
meter to adjust. Therefore, 
 

0Plim t
t

=
∞→

                            (15) 

 
Being O the null matrix (all its elements equal to zero), and 
originally, 
 

{ }T
ttt EP εε ×=                       (16) 

 
Where E{•} represents the mathematical expectation of “•”. 

On the other hand, the computational implementation of the 
above set of equations involves the use of four nested for’s 
plus a strict control of the stability of the Eq.14 from restrict-
ing the possible values of k, i.e., only it is possible to use 
0<k<2.  



 

 

 
 

Fig.8: Constant Model Kalman’s Filter. 
 
Therefore, it is much more efficient to implement such fil-

tering through a simple bidimensional mask convolution, eli-
minating the predictor form of Eq.10, which allows much more 
efficient implementations using - for example - a convolution 
through the Fast Fourier Transform (FFT) [15, 16]. In conse-
quence, we need deduce such mask. If we replace Eq.13 in 
Eq.12, we have, 

 

tbtt XMY
)

⊗−=ε                            (17) 

 
Now, we replace Eqs. 11 and 17 inside Eq.10, obtaining, 
 

( )tbttt XMYIkXX
)))

⊗−××+=+1                (18) 

 
Reagrouping terms of Eq.18, and remembering a model of 

low noise and linear space and time invariant blur, we have, 
 

tdt YMX ⊗=+1

)

                        (19) 

 
Where Md is a mask as shown in Fig.9, and the following rela-
tionships to consider are very important, 

 

1)1( 2 =+×− βαN ,  (for deblurring)               (20) 

0)1( 2 =+×− βαN ,  (for edge detection)               (21) 

 
Thus, a new and simplified model of deblurring appears on 

the scene, see Fig.10, where αααα < 0 and ββββ > 1. We need to 
establish precisely both parameters, then, there are two possi-
ble ways forward: 

 
1. Choose N (integer, positive, odd and small), and ββββ > 1 

(and arbitrarily less than 2), then αααα is derived from 
Eq.20. 

2. Start with arbitrary values of αααα and ββββ (about certain 
recommendations, e.g., -0.1 < αααα    < 0 and 1 < ββββ    ≤ 2) and 
generating a random population of the pair [αααα, ββββ], and 

 
 

Fig.9: Deblurring mask M d. 
 
 

 
Fig.10: New and simplified model of deblurring. 

 
 

deducting N from Eq.20.  
The mentioned pair serves of initial population for the 

Genetic Algorithm [22] of Fig.11, where the pair is called 
chromosome, and αααα and ββββ are called genes. The metric for the 
adjustment is the Mean Squared Error (MSE), which is defined 
in the next section [15, 16]. 

On the other hand, the employed Genetic Algorithm is com-
posed of three big modules:  

a) Scoring, 
b) Crossover Operator, and 
c) Mutation Operator 
 
The first consists of the following submodules: 
a.1) Set-point where the error pixel-by-pixel arises 
a.2) The MSE calculation with the error pixel-by-pixel 
a.3) Sorting from minimum to maximum MSE 
a.4) Genocide Operator eliminates the chromosomes with 
       biggest MSE, i.e., there are a fixed number of chromo- 
       somes that survive per cycle, the fittest. Such fixed  
       number is a design parameter of the Genetic Algorithm. 
 
The Crossover Operator (or Mating Operator) crosses the 

parent chromosomes (selected randomly) generating new son 
chromosomes, which will be better and/or worse than their 
parents [22]. 

 
The Mutation Operator must have a low frequency of action 

for the purpose of not disturbing the nature of the species, i.e., 
skip to solve another problem [22].  



 

 

 
 

Fig.11: Genetic Algorithm for calculating the parameters of the mask.  



 

 

D.  Applications: 

We present two main applications of video compression in 
real time for Digital TV, according to standard ISDB-Tb [24]. 

In the first, we move from a resolution of 1920x1080 Full-
HD to another 5 times lower of 720x576 SD. As we have said 
before, the standard video compression H.264 is not affected 
by the supercompression. 

The Fig.12 shows a diagram of the encoder with three 
modules embedded into GPGPU cards. 

 

 

Fig.12: Encoder. 
 

Fig.13 shows in detail the employed technology for the real 
implementation of Fig.12, which consists in two Quadro GPUs 
[25] the first for video slicing. frame-by-frame, and the second 

 
 

Fig.13: Encoder implementation with GPGPUs. 
 
for video reassembling, respectively. The downsampling is im-
plemented on a Tesla 250 [25]. Moreover, in Fig.13: 
 
TX means transmitter 
AAC “Advanced Audio Coding”, and it is the compression  
          audio format employed for ISDB-Tb [24]. 

 
On the other hand, Fig.14 shows a diagram of the decoder 

implemented inside a set-top-box (STB). So that, if the STB 
has the superdecompression and depending on the resolution 
of the LCD TV, we obtain resolutions of High Definition (HD) 
720x1280 or Full-HD 1080x1920. However, if the STB hasn’t 
the superdecompression, the system must be compatible, there-
fore we obtain only SD 576x720.  

The Fig.15 shows the Super-Resolution Module (SRM) 
used inside STB of Fig.14, which includes upsampling and 
deblurring, thus restoring the original resolution. 



 

 

 

Fig.14: Decoder. 
 
Fig.16 represents the real implementation of Fig.14, in 

which, we can see, the set-top-box used by UNTreF, and deve-
loped by Dixar Inc [30]. This STB works equally with 
Terrestrial Digital TV, IPTV, WebTV, 3DTV and Digital 
Cinema. Besi-des, this STB has camera and motion sensors, 
which can be used as interactive gaming platform. 

Actually, we are working on an integrated circuit (chip) [26] 
to replace the current GPGPU inside the STB, minimizing the 
power consumption and the size of this [21, 30]. 

Finally, the second application of this technology presented 
here is shows in Fig.17, where we use a mobile phone with 
High-Definition Multimedia Interface (HDMI) video out as a 
receptor. 

 

Fig.15: Super-resolution Module (SRM). 
 

 

 

 

 
 

Fig.16: Set-top-box of Dixar Inc. 



 

 

 

Fig.17: Mobile phone as HD or Full-HD receptor. 
 
As shows in Fig.17, we take the HDMI video out, and we 

introduce it in the STB. Depending on the resolution of the 
LCD TV we obtain HD o Full-HD resolutions.  

The original resolution of the mobile phone employed is 
Low Definition (LD) 320x240 One-Seg (one of 13 segments 
that form the ISDB-T norm, see Fig.18). In this case, the addi-
tional compression rate of STB on H.264 is 27:1 [21]. 

 

 

Fig.18: Detail of 13 segments inside ISDB-T channel. 

IV.  METRICS 

A. Data Compression Ratio (CR) 

    Data compression ratio, also known as compression power, 
is a computer-science term used to quantify the reduction in 
data-representation size produced by a data compression algo-
rithm. The data compression ratio is analogous to the physical 
compression ratio used to measure physical compression of 
substances, and is defined in the same way, as the ratio bet-
ween the uncompressed size and the compressed size [15, 16]: 
 

SizeCompressed

SizeedUncompress
CR =                                               (22) 

 
Thus a representation that compresses a 10MB file to 2MB 

has a compression ratio of 10/2 = 5, often notated as an 
explicit ratio, 5:1 (read "five to one"), or as an implicit ratio, 
5X. Note that this formulation applies equally for compres-
sion, where the uncompressed size is that of the original; and 
for decompression, where the uncompressed size is that of the 
reproduction. 

B. Bit-per-pixel (bpp) 

    The "bits per pixel" refers to the sum of the bits in all three 
color channels and represents the sum colors available at each 

pixel before compression (
bc

bpp ). However, as a compression 

metric, the bits-per-pixel refers to the average of the bits in all 

three color channels, after of compression process (
ac

bpp ). 

CR
bc

bpp

bc
bpp

SizeedUncompress

SizeCompressed

ac
bpp =×=                (23) 

 
Besides, bpp is also defined as 

pixelsofNumber

bitscodedofNumber

ac
bpp =                                      (24) 

 

C. Mean Absolute Error (MAE) 

    The mean absolute error is a quantity used to measure how 
close forecasts or predictions are to the eventual outcomes. 
The mean absolute error (MAE) is given by 
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which for two NR×NC (rows-by-columns) monochrome ima-

ges X andX
)

, where the second one of the images is conside-
red a decompressed approximation of the other of the first one.  
 

D.  Mean Squared Error (MSE) 

    The mean square error or MSE in Image Compression is 
one of many ways to quantify the difference between an origi-



 

 

nal image and the true value of the quantity being decom-
pressed image, which for two NR×NC (rows-by-columns) 

monochrome images X andX
)

, where the second one of the 
images is considered a decompressed approximation of the 
other is defined as: 
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E. Peak Signal-To-Noise Ratio (PSNR) 

    The phrase peak signal-to-noise ratio, often abbreviated 
PSNR, is an engineering term for the ratio between the 
maximum possible power of a signal and the power of 
corrupting noise that affects the fidelity of its representation. 
Because many signals have a very wide dynamic range, PSNR 
is usually expressed in terms of the logarithmic decibel scale. 
The PSNR is most commonly used as a measure of quality of 
reconstruction in image compression, etc [15]. It is most easily 
defined via the mean squared error (MSE), so, the PSNR is 
defined as [16]: 

 

)(10log20)
2

(10log10
MSE

XMAX

MSE
XMAX

PSNR ==              (27) 

 
Here, MAXX is the maximum pixel value of the image. 

When the pixels are represented using 8 bits per sample, this is 
256. More generally, when samples are represented using 
linear pulse code modulation (PCM) with B bits per sample 
(bps), maximum possible value of MAXX is 2B-1. 
 

For color images with three red-green-blue (RGB) values 
per pixel, the definition of PSNR is the same except the MSE 
is the sum over all squared value differences divided by image 
size and by three [15, 16]. 
 

Typical values for the PSNR in lossy image and video 
compression are between 30 and 50 dB, where higher is better. 

V. SIMULATIONS  

The simulations are organized in four experiments, separa-
ted in two groups: still images (for obvious reasons, however, 
identical results were achieved in video, HDTV and Digital 
Cinema) by color and gray. All experiments include calcula-
tions of MAE, MSE, PSNR, bpp and CR. 

 
All these experiments involve the comparison between the 

use of JPEG vs SC (JPEG+SR), and JPEG2000 vs SC 
(JPEG2000+SR) for still color and gray images, in both cases 
over a BMP file (which doesn’t have compression, to raw data 
mode), where the used acronym means: 
 
BMP: BitMap file format [27] 
JPEG: Joint Picture Group [27] 
JPEG2000: JPEG with wavelets [28] 

SC: Super-compression 
SR: Super-resolution 
 

A. Group 1: Main characteristics of employed image: 
File = angelina.bmp 
Color = yes 
Size = 1920-by-1080 pixels 
Original bpp = 24 
 
Experiment 1: JPEG vs SC (JPEG+SR) 
JPEG:  See Table I, column JPEG, and Fig.19 (2nd from top). 

Encoder: 
1. From BMP (24 bpp, 1920x1080) 
2. To JPEG (0.6853 bpp, 1920x1080) 

Channel/storage 
Decoder: 

1. From JPEG (0.6853 bpp, 1920x1080) 
2. To BMP(24 bpp, 1920x1080) 

 
SC (JPEG+SR):  See Table I, column SC (JPEG+SR), and  
                             Fig.19 (3rd from top). 

Encoder: 
1. BMP (24 bpp, 1920x1080) 
2. Downsampling (24 bpp, 720x576) 
3.  JPEG (0.1445 bpp, 720x576) 

Channel/storage 
Decoder: 

1. JPEG (0.1445 bpp, 720x576) 
2. Upsampling (0.4323 bpp, 1920x1080) 
3. Deblurring (0.5004 bpp, 1920x1080) 
4.  BMP (24 bpp, 1920x1080) 

 
Experiment 2: JPEG2000 vs SC (JPEG2000+SR) 
JPEG2000:  See Table II, column JPEG2000, and Fig.19 (4th  
                     from top). 

Encoder: 
1. From BMP (24 bpp, 1920x1080) 
2. To JPEG2000 (2.6285 bpp, 1920x1080) 

Channel/storage 
Decoder: 

1. From JPEG2000 (2.6285 bpp, 1920x1080) 
2. To BMP (24 bpp, 1920x1080) 

 
SC (JPEG2000+SR):  See Table II, column SC (JPEG2000+  
                                     SR), and Fig.19 (down). 

Encoder: 
1. BMP (24 bpp, 1920x1080) 
2. Downsampling (24 bpp, 720x576) 
3.  JPEG2000 (0.8148 bpp, 720x576) 

Channel/storage 
Decoder: 

1. JPEG2000 (0.8148 bpp, 720x576) 
2. Upsampling (1.3903 bpp, 1920x1080) 
3. Deblurring (2.2397 bpp, 1920x1080) 
4.  BMP (24 bpp, 1920x1080) 

 
    The following tables show the metrics vs the Algorithms for 
both cases, i.e., JPEG and JPEG2000 vs Supercompression.  



 

 

TABLE I 
ANGELINA (COLOR, 24 BPP, 1920X1080): JPEG VS SC (JPEG+SR)  

Metrics JPEG SC (JPEG+SR) 

MAE 0.5333 1.0009 
MSE 2.3137 7.6264 

PSNR 43.6693 38.2393 
bpp 0.6853 0.1445 
CR 35.0210 166.1154 

  
TABLE II 

ANGELINA (COLOR, 24 BPP, 1920X1080): JPEG2000 VS SC (JPEG2000+SR) 

Metrics JPEG2000 SC (JPEG2000+SR) 

MAE 0.0446 0.2961 
MSE 0.0472 1.1385 

PSNR 61.3884 47.5673 
bpp 2.6285 0.8148 
CR 9.1307 29.4538 

 

B. Group 2: Main characteristics of employed image: 
File = lena.bmp 
Color = gray 
Size = 512-by-512 pixels 
Original bpp = 8 
 
Experiment 3: JPEG vs SC (JPEG+SR) 
JPEG:  See Table III, column JPEG, and Fig.20 (2nd from  
             top). 

Encoder: 
1. From BMP (8 bpp, 512x512) 
2. To JPEG (0.8953 bpp, 512x512) 

Channel/storage 
Decoder: 

1. From JPEG (0.8953 bpp, 512x512) 
2. To BMP(24 bpp, 512x512) 

 
SC (JPEG+SR):  See Table III, column SC (JPEG+SR), and  
                             Fig.20 (3rd from top). 

Encoder: 
1. BMP (8 bpp, 512x512) 
2. Downsampling (8 bpp, 256x256) 
3.  JPEG (0.2957 bpp, 256x256) 

Channel/storage 
Decoder: 

1. JPEG (0.2957 bpp, 256x256) 
2. Upsampling (0.6502 bpp, 512x512) 
3. Deblurring (0.7727 bpp, 512x512) 
4.  BMP (8 bpp, 512x512) 

 
Experiment 4: JPEG2000 vs SC (JPEG2000+SR) 
JPEG2000:  See Table IV, column JPEG2000, and Fig.20 (4th  
                     from top). 

Encoder: 
1. From BMP (8 bpp, 512x512) 
2. To JPEG2000 (3.7242 bpp, 512x512) 

Channel/storage 
Decoder: 

1. From JPEG2000 (3.7242 bpp, 512x512) 
2. To BMP (8 bpp, 512x512) 

 

 

 

 

 
 

Fig.19: First (top) original image, second (coded and decoded with 
JPEG), third (coded and decoded with JPEG+Supercompression), 

fourth (coded and decoded with JPEG2000), fifth (down, coded and 
decoded with JPEG2000+Supercompression). 

 



 

 

SC (JPEG2000+SR):  See Table IV, column SC (JPEG2000+  
                                     SR), and Fig.20 (down). 

Encoder: 
1. BMP (8 bpp, 512x512) 
2. Downsampling (8 bpp, 256x256) 
3.  JPEG2000 (1.0066 bpp, 256x256) 

Channel/storage 
Decoder: 

1. JPEG2000 (1.0066 bpp, 256x256) 
2. Upsampling (1.6421 bpp, 512x512) 
3. Deblurring (2.4230 bpp, 512x512) 
4.  BMP (8 bpp, 512x512) 

 
    The following tables show the metrics vs the Algorithms for 
both cases, i.e., JPEG and JPEG2000 vs Supercompression.  
 
 

TABLE III 
LENA (GRAY, 8 BPP, 512X512): JPEG VS SC (JPEG+SR) 

Metrics JPEG SC (JPEG+SR) 

MAE 1.0785 2.0243 
MSE 4.4363 14.6230 

PSNR 41.6606 36.4804 
bpp 0.8953 0.2957 
CR 8.9358 27.0526 

 
TABLE IV 

LENA (GRAY, 8 BPP, 512X512): JPEG2000 VS SC (JPEG2000+SR) 

Metrics JPEG2000 SC (JPEG2000+SR) 

MAE 0.0902 1.5312 
MSE 0.0905 9.2596 

PSNR 58.5647 38.4649 
bpp 3.7242 1.0066 
CR 2.1481 7.9475 

 
 

Finally, all techniques were previously implemented in 
MATLAB® R2010b (Mathworks, Natick, MA) [29] on a 
Notebook with an Intel® Core(TM) i5 CPU M 520 @ 2.40 
GHz processors and 2 GB RAM on Microsoft® Windows 7© 
32 bits, and then in OpenCL and CUDA© of NVIDIA® [25] 
on NVIDIA® Quadro 6000 + Tesla 2050 + Quadro 6000 
GPUs for encoder, and NVIDIA® GTX285 GPU inside STB 
of Dixar Inc [30] for decoder, as shown in Fig.16. 

VI.  CONCLUSION 

A. Group 1:  
Experiment 1: JPEG vs SC (JPEG+SR) 

     In this experiment SC (JPEG+SR) has MAE, MSE and 
PSNR with practically the same order of magnitude than JPEG 
alone, however, bpp is five times lower, at the same time, CR 
is five times higher, see Table I. 

    As shown in Fig.19, the second (coded and decoded with 
JPEG) and the third (coded and decoded with JPEG+Super-
compression) from the top, have the same look-and-feel and 
image quality than the top, i.e., original image of Angelina. 

 
Experiment 2: JPEG2000 vs SC (JPEG2000+SR) 
We make similar considerations for this experiment, regar- 

 

 

 

 

 
 

Fig.20: First (top) original image, second (coded and decoded with 
JPEG), third (coded and decoded with JPEG+Supercompression), 

fourth (coded and decoded with JPEG2000), fifth (down, coded and 
decoded with JPEG2000+Supercompression). 



 

 

ding to the last experiment, see Table II and Fig.19 (fourth 
coded and decoded with JPEG2000 alone, and fifth coded and 
decoded with JPEG2000+Supercompression), however, there 
is a big difference between JPEG and JPEG-2000 to compress 
this type of image (compare bpp and CR of Table I and II). 

 
B. Group 2:  

Experiment 3: JPEG vs SC (JPEG+SR) 
In this experiment SC (JPEG+SR) has MAE, MSE and PSNR 

with practically the same order of magnitude than JPEG alo-
ne, however, bpp is five times lower, at the same time, CR is 
five times higher, see Table III, idem Experiment 1. 

 As shown in Fig.20, the second (coded and decoded with 
JPEG) and the third (coded and decoded with JPEG+Super-
compression) from the top, have the same look-and-feel and 
image quality than the top, i.e., original image of Lena. 

 
Experiment 4: JPEG2000 vs SC (JPEG2000+SR) 

Identical considerations than Experiment 2 are necessary,  
see Table IV and Fig.20, with the same conclusions about the 
difference between JPEG and JPEG-2000 to compress this 
type of image (compare bpp and CR of Table III and IV). 

 
C. For both groups:  
 We used Texture Memory inside STB [21] GPGPU to a 

computational efficient implementation of the bidimensional 
convolutive mask of deblurring module, allowing us to reach 
TV times, i.e., a frame every 40 milliseconds. 

APPENDIX 

Super-resolution method is typically used to restore a high-
resolution image from several low-resolution noisy observa-
tions [3]. In this paper, we consider the interpolation of a sin-
gle image. So, we will formulate the problem as 

 
yxA =                                 (28) 

 
where x is the unknown high-resolution image (represented as 
a vector of pixel values), y is the known low-resolution image, 
and A is the downscaling operator typically consisting of deci-
mation D following a low-pass filtering H: 
 

HDA =                                 (29) 
 

The choice of the low-pass filtering operator depends on a 
point spread function of the imaging system that produced the 
low resolution image. If the imaging system is unknown we 
will assume that operator H is a simple box filter.  

 
A. Regularization 
The Eq.28 is generally ill-posed and a small change of the 

input vector y can cause a huge change of the resulting vector 
x. For the Eq.28, the regularized solution is found as: 

 

)(minarg xFyAxx
p

n
α+−=                     (30) 

where the first term is called as “discrepancy”, F(x) is the 
stabilizer and α > 0 is the coefficient of regularization [3]. 

The most popular and universal stabilizer is the Tikhonov 
functional. It is calculated as a grid approximation of the 
functional: 

 
2

2
)( xxF ∆=                                 (31) 

 
and n = 2, p = 2. For each α > 0 the solution x is correct: it is 
unique, defined for every y and continuously depends on y. We 
can write the Euler equation for this case: 

 

yAxAA TT =∆+ )( 2                                    (32) 

 
But in this case the algorithm becomes linear because x is 

the solution of the system of linear equations. So, this method 
inherits drawbacks of linear interpolation algorithms and we 
need to find more adaptive stabilizer for image resampling.  

We will consider Total Variation (TV) and Bilateral TV 
(BTV) stabilizers [3], which are working in l1 norm (n = 1,     
p = 1): 

 

1
)( xxTV ∇=                                             (33) 

 
where x∇  is the gradient operator (its modulus), 
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where s
xS  and 

t
yS  are shift operators along x and y axes by s 

and t pixels respectively, γ = 0.8. 
 
B. Inverse iterations 
To solve the equation (30) with a stabilizer (34) the iterative 

steepest-descent method can be used: 
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z = sign x is a vector with per-element applied sign function; 
DT is an up-scaling operation. If D in (29) is the simplest 
decimation operator that takes every k-th pixel, DT is the up-
scaling operator by zero insertion. If H in (29) is a symmetric 
filtering, then HT is equal to H. x0 is the initial approximation 
of the high resolution image. 
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