

Abstract—Super-resolution is nowadays used for a high-resolu-

tion image produced from several low-resolution noisy frames. In this
work, we consider the problem of high-quality interpolation of a
single noise-free image. Such images may come from different sour-
ces, i.e., they may be frames of videos, individual pictures, etc. On
the other hand, in the encoder we apply a downsampling via bidimen-
sional interpolation of each frame, and in the decoder we apply a
upsampling by which we restore the original size of the image. If the
compression ratio is very high, then we use a convolutive mask that
restores the edges, eliminating the blur. Finally, both, the encoder
and the complete decoder are implemented on General-Purpose
computation on Graphics Processing Units (GPGPU) cards. In fact,
the mentioned mask is coded inside texture memory of a GPGPU.

Keywords—General-Purpose computation on Graphics Process-
ing Units, Image Compression, Interpolation, Super-resolution.

I. INTRODUCTION

IGITAL image capture produces discrete representations of
continuous scenes. This discretisation in both space and

intensity is a sampling process that creates aliasing, and infor-
mation at frequencies above the Nyquist rate is lost. It is com-
mon to wish to construct a higher resolution image from a tem-
plate image or a set of images, but the aliasing and loss of fre-
quency information makes this an ill-posed (inverse) pro-blem.

The typical solution to this problem (known in the literature
as image super-resolution reconstruction, or simply super-
resolution) is to use an ensemble of related lower-resolution
images. As each of these images has aliased the higher fre-
quency information slightly differently, under certain condi-
tions it is possible to “unwrap” some of the aliasing and
reconstruct the lost higher frequencies.

There are numerous methods [1-5] of performing super-
resolution. Many of them are computationally expensive in
nature, but allow for complicated motion models, significant
noise and image degradation, and other aspects that are not
considered in this work. Given assumptions of global transla-
tional motion, low noise and linear space and time invariant
blur due to the imaging sensor point spread function (PSF),
image super-resolution reconstruction can be split into there

 Manuscript sent November 26th, 2010.
 Mario Mastriani is with the Grupo de Investigación sobre Procesamiento
de Señales e Imágenes (GIPSI), Univ. Nac. de Tres de Febrero (UNTreF), 910
Florida St., Floor 6th, Room B, (C1005AAT), CABA, Argentina. phone: +54-
11-4015-2295; fax: +54-11-4893-2204; e-mail: mmastriani@untref.edu.ar.

distinct steps:
• Registration
• Reconstruction/Interpolation
• Deblurring

Image registration is a technique that can be used to

determine the relative translations between the input images.
Generally, the desire is to do this from the contents of the
images alone, without any prior knowledge. There are many
different methods for performing registration [1]; however, in
the context of image super-resolution, image registration is
required to determine the offsets between the images with
accuracy down to a small fraction of a pixel [1].

Once the images have been registered, all the pixels from
the ensemble can be combined to form a composite image. The
resultant image is no longer sampled on a uniform rectangular
grid, but due to global translational motion, it has a semi-
uniform structure, as can be seen in Figure 1. Reconstructing
the image data at all points on a high resolution grid requires
that the semi-regular data is interpolated and resampled. It is
this interpolation problem that is addressed in this paper.

Fig.1: Composite image exhibits a semi-uniform structure.

For the full super-resolution approach, a deblurring proce-

Single frame supercompression of still images,
video, High Definition TV and Digital Cinema

Mario Mastriani

D

dure can now be applied that restores the high frequencies that
have been suppressed by the low-resolution imaging process.
In this paper we perform this deblurring after the interpolated
process via a convolution between the up-sampled image and a
convolutive mask deduced specifically.

However, the main goal of Super-Resolution (SR) methods
–in practice– is to recover a high-resolution image from one or
more low-resolution input images. Methods for SR can be
broadly classified into two families of methods:
1. The classical multi-image super-resolution, and
2. Example-Based super-resolution.

In the classical multi-image SR (e.g., [2] to name just a few)
asset of low-resolution images of the same scene are taken (at
subpixel misalignments). Each low-resolution image imposes
asset of linear constraints on the unknown high-resolution
intensity values. If enough low-resolution images are available
(at subpixel shifts), then the set of equations becomes
determined and can be solved to recover the high-resolution
image. Practically, however, this approach is numerically
limited only to small increases in resolution [2] (by factors
smaller than 2).

These limitations have lead to the development of “Exam-
ple-Based Super-Resolution” also termed “image hallucina-
tion” (see references in [2]). In example-based SR, correspon-
dences between low and high-resolution image patches are
learned from a data base of low and high-resolution image
pairs (usually with a relative scale factor of 2), and then
applied to a new low-resolution image to recover its most
likely high-resolution version. Higher SR factors have often
been obtained by repeated applications of this process.
Example-based SR has been shown to exceed the limits of
classical SR. However, unlike classical SR, the high resolution
details reconstructed (“hallucinated”) by example-based SR
are not guaranteed to provide the true (unknown) high-resolu-
tion details.

Sophisticated methods for image up-scaling based on lear-
ning edge models have also been proposed (e.g., [3-5]). The
goal of these methods is to magnify (up-scale) an image while
maintaining the sharpness of the edges and the details in the
image. In contrast, in SR (example-based as well as classical)
the goal is to recover new missing high-resolution details that
are not explicitly found in any individual low-resolution image
(details beyond the Nyquist frequency of the low-resolution
image). In the classical SR, this high-frequency information is
assumed to be split across multiple low-resolution images,
implicitly found there in aliased form. In example-based SR,
this missing high-resolution information is assumed to be
available in the high-resolution data base patches, and learned
from the low-res/high-res pairs of examples in the database.

However beyond what we have said above, in this paper, we
consider the interpolation of a single image.
On the other hand, the rendering of lower resolution image
data on higher resolution displays has become a very common
task, in particular because of the increasing popularity of
webcams, camera phones, and low-bandwidth video streaming.
Thus, there is a strong demand for real-time, high-quality

image magnification. In this work, we suggest to exploit the
high performance of general-purpose computation on program-
mable graphics processing units (GPGPUs) for an original
image magnification method. To this end, we propose a
GPGPU-friendly algorithm for image up-sampling with edge
restoration image interpolation, which avoids ringing artifacts,
excessive blurring, and stair-casing of oblique edges. At the
same time it features gray-scale invariance, is applicable to
color images, and allows for real-time processing of full-
screen images on today’s GPGPUs [6-9].

The Bidimensional Interpolation is outlined in Section II,
where we discuss the problem of interpolating visually accep-
table images at a higher resolution. We first present the inter-
polation problem and why linear interpolation filters are inade-
quate for image data. To represent the major mathematical
approaches to image processing, we discuss and evaluate five
different image interpolation methods. Super-resolution sche-
me for compression including linear interpolation are outlined
in Section III. Metrics are outlined in Section IV. Simulations
are outline in Section V. Finally, Section VI provides a conclu-
sion of the paper.

II. BIDIMENSIONAL INTERPOLATION

A digital image is not an exact snapshot of reality, it is only
a discrete approximation. This fact should be apparent to the
average web surfer, as images commonly become blocky or
jagged after being resized to fit the browser. The goal of image
Interpolation is to produce acceptable images at different reso-
lutions from a single low-resolution image. The actual resolu-
tion of an image is defined as the number of pixels, but the
effective resolution is a much harder quantity to define as it
depends on subjective human judgment and perception. The
goal of this section is to explore different mathematical formu-
lations of this essentially aesthetic quantity.

The image interpolation problem goes by many names,
depending on the application: image resizing, image up-sam-
pling/down-sampling, digital zooming, image magnification,
resolution enhancement, etc. The term super-resolution is
sometimes used, although in the literature this generally refers
to producing a high-resolution image from multiple images
such as a video sequence. If we define interpolation as “filling
in the pixels in between,” the image interpolation problem can
be viewed as a subset of the inpainting problem (see Figure 2).

The applications of image interpolation range from the
common place viewing of online images to the more sophis-
ticated magnification of satellite images. With the rise of
consumer-based digital photography, users expect to have a
greater control over their digital images. Digital zooming has a
role in picking up clues and details in surveillance images and
video. As high-definition television (HDTV) technology enters
the marketplace, engineers are interested in fast interpolation
algorithms for viewing traditional low-definition programs on
HDTV. Astronomical images from rovers and probes are
received at an extremely low transmission rate (about 40 bytes
per second), making the transmission of high-resolution data
infeasible [10]. In medical imaging, neurologists would like to

Fig.2: Image interpolation using linear method of interp2 built-in
MATLAB® function. Top: original image. Medium: close-up of

eye in image. Down: interpolated image.

have the ability to zoom in on specific parts of brain tomo-

graphy images. This is just a short list of applications, but the
wide variety cautions us that our desired interpolation result
could vary depending on the application and user.

A. The Image Interpolation Problem

In this section, we will establish the notation for image
interpolation used throughout the paper. Suppose our image is

defined over some rectangle 2ℜ⊂Ω . Let the function

ℜ→Ω:f be our ideal continuous image. In an abstract

sense, we can think of f as being “reality” and Ω as our
“viewing window”. Our observed image u0 is a discrete
sampling of f at equally spaced points in the plane. If we
suppose the resolution of u0 is yx δδ × , we can express u0 by

Ω∈=),(),,(),(),(,0 yxyxfyxCyxu yx δδ (1)

where C denotes the Dirac comb:

.),(,),(),(2

,
, ℜ∈= ∑

∈

yxylxkyxC
Zlk

yx δδδδδ (2)

The goal of image interpolation is to produce an image u at

a different resolution '' yx δδ × . For simplicity, we will assume

that the Euclidean coordinates are scaled by the same factor K:

.),(),,(),(),(
,

Ω∈= yxyxfyxCyxu
K
y

K
x δδ (3)

Given only the image u0, we will have to devise some

reconstruction of f at the pixel values specified by this new
resolution. We will refer to K as our zoom or magnification
factor. Obviously, if K = 1 we trivially recover u0 .The image

u0 is upsampled if 1↑K and downsampled if 1↓K . In this

paper, we will focus on the upsampling case when 1↑K is
an integer.

Let Ω⊂ΩK denote the lattice induced by (3) for a fixed

zoom K. Note that the lattice of the original image u0 in (2) is

1Ω . Also note that for infinite magnification we obtain

Ω⊂ΩK as ∞→K . For computation purposes, we can

shift the lattices to the positive integers. So if the observed
image u0 is an m x n image,

[] [] .,,,2,1,,2,1 +∈×=Ω ZKKnKmK KK (4)

Many interpolation techniques impose the constraint

KΩ⊆Ω1 . In this case, only a subset of the pixels in KΩ

needs to be determined and the interpolation problem becomes
a version of the inpainting problem.

Given the notation above, we can state the image
interpolation problem succinctly: Given a low-resolution

image ℜ→Ω10 :u and a zoom 1↑K , find a high-

resolution image ℜ→ΩKu : . Obviously, this is an ill-

posed problem. We need to impose assumptions on the
reconstruction of f in equation (3). The choice of interpolation
technique depends on the choice of assumptions. In other
words, we need a mathematical understanding of what
constitutes our perception of “reality” f.

Interpolation methods differ in their mathematical descrip-

tion of a “good” interpolated image. Although it is difficult to
compare methods and judge their output, [10] proposes 9 basic
criteria for a good interpolation method. The first 8 are visual
properties of the interpolated image, the last is a computational
property of the interpolation method.
1) Geometric Invariance: The interpolation method should

preserve the geometry and relative sizes of objects in an
image. That is, the subject matter should not change under
interpolation.

2) Contrast Invariance: The method should preserve the lumi-
nance values of objects in an image and the overall contrast
of the image.

3) Noise: The method should not add noise or other artifacts to
the image, such as ringing artifacts near the boundaries.

4) Edge Preservation: The method should preserve edges and
boundaries, sharpening them where possible.

5) Aliasing: The method should not produce jagged or
“staircase” edges.

6) Texture Preservation: The method should not blur or
smooth textured regions.

7) Over-smoothing: The method should not produce undesi-
rable piecewise constant or blocky regions.

8) Application Awareness: The method should produce results
appropriate to the type of image and order of resolution.
For example, the interpolated results should appear realis-
tic for photographic images, but for medical images the
results should have crisp edges and high contrast. If the
interpolation is for general images, the method should be
independent of the type of image.

9) Sensitivity to Parameters: The method should not be too
sensitive to internal parameters that may vary from image
to image.

Of course, these are qualitative and somewhat subjective
criteria. We unlike [10], do not hope to develop a mathemati-
cal model of image interpolation and error analysis, but simply
apply the most efficient method for our development. In a
sense, the method employed in this paper presents a mathema-
tical model of these visual criteria.

B. Linear Interpolation Filters

The simplest approach is to assume that f in equation (3) is

reconstructed by a convolution kernel ℜ→ℜ2:ϕ where

1),(=∫ dxdyyxϕ . Then we can approximate f by

ϕ*0uf ≈ . (5)

Substituting this into (3) gives rise to a general linear inter-

polation filter

.),(),,)(*).(,(),(0,
Ω∈= yxyxuyxCyxu

K
y

K
x ϕδδ (6)

The simplest linear filters are the bilinear and bicubic inter-

polation, which assume the pixel values can be fit locally to
linear and cubic functions, respectively [10]. Along with
simple nearest neighbor interpolation, these two filters are the
most common interpolation schemes in commercial software.
These methods are easy to code as matrix multiplications of u0.
However, an image contains edges and texture, in other words

Fig.3: Part of Lena image down-sampled and then up-sampled by
factor K = 16. Top: Original, Second: Nearest Neighbor, Third:

Bilinear, and Down: Bicubic.

discontinuities. So the assumptions that pixel values locally fit
a polynomial function will produce undesirable results. The

bilinear and bicubic interpolation methods [10] may introdu-
ced blurring, create ringing artifacts, and produce a jagged
aliasing effect along edges (see Fig.3). The blurring effects
arise from the fact that the methods compute a weighted ave-
rage of nearby pixels, just as in Gaussian blurring. The aliasing
effects arise because the linear filters do not take into conside-
ration the presence of edges or how to reconstruct them.

Other linear interpolation filters include quadratic zoom, the
B-spline method, and zero-padding. But these schemes produ-
ce the same undesirable effects as the bilinear and bicubic

methods, as mentioned in [10]. Linear filters differ in the
choice of ϕ , which essentially determine show to compute the

weighted average of nearby pixels. While this is a natural
interpolation scheme for general data sets, this is not necessa-
rily appropriate for visual data. In order to improve upon these
linear filters, we need to consider interpolation methods that
some how quantify and preserve visual information.

C. Which Methods to Consider?

Generally speaking, mathematical approaches to image
processing can be divided into five categories:
1. Partial-Differential Equation (PDE)-Based Methods (e.g.

heat diffusion, Perona-Malik, Navier-Stokes, and mean cur-
vature).

2. Variations of Energy (e.g. Total Variation, Mumford-Shah,
active contours)

3. Multiscale Analysis (e.g. wavelets, Fourier analysis, Gabor
analysis, Laplacian pyramids)

4. Machine Learning (e.g. unsupervised learning, data mining,
Markov networks)

5. Statistical / Probabilistic Methods (e.g. Bayesian inference,
Natural Scene Statistics, pattern theory)

We are trying to describe the field in broad terms, but not to

rank or pigeonhole work in computer vision. Indeed, many
techniques such as TV-wavelets inpainting certainly do not fit
into one category. Also, these methods differ at the mathema-
tical level, but not necessarily at the conceptual level. For
example, some versions of the TV energy can be minimized by
solving a PDE or by optimizing a variation of energy.

In our attempt to survey recent work in image interpolation
and also display the variety of mathematics used, we will
highlight one method from each of the five categories [10]

1. A PDE-Based Approach: anisotropic heat diffusion
2. A Variation of Energy Approach: Mumford-Shah inpainting
3. A Multiscale Approach: wavelet-based interpolation
4. A Machine Learning Approach: LLE-based neighbor em-

beddings
5. A Statistical Approach: NL-means interpolation

These methods are, in some sense, representative of the

mathematical approaches to the image interpolation problem
and, in a larger sense, to the field of image processing. For
example, the heat equation is the most studied PDE in image

processing and the Mumford-Shah energy has generated
dozens, if not hundreds, of research papers. However, these
methods have a number of disadvantages to its implementa-
tion, reason, we choose a configuration based on linear inter-
polation. The main disadvantages are:
1. Their hard coding
2. They depend heavily on initial conditions
3. Their high computational complexity
4. Their visual quality is not superior to linear interpolation,

except for high levels of downsampling/upsampling, with
automatically means a high rate of compression/decom-
pression.

In the latter case, we use a convolutive mask [11-14] to en-

hance the edges, as discussed in the next section.

III. SUPER-RESOLUTION SCHEME FOR COMPRESSION

This section is organized into four parts, for a better unders-
tanding of the concepts:

A. Super-resolution vs Deblurring,
B. Compression vs Super-compression,
C. Deduction of the mask
D. Applications

A. Super-resolution vs Deblurring:

As we saw in Section I, there is much confusion between the
concepts of super-resolution and deblurring in Digital Image
Processing [15, 16]. We are going to establish here two rigo-
rous definitions for the purpose of eliminating this confusion.

We say that a process is super-resolution if it restores the

sharpness of an image involving an increase in the resolution
of the same [1-5, 17-19], see Appendix.

We say that a process is deblurring if it restores the sharp-

ness of an image not involving an increase in the resolution of
the same. This process is applied when the image sharpness
suffers an aberration called blur [15, 16], which comes from a
high relative speed of the object in focus in relation to the
camera, fast opening and closing the shutter, etc.

We consider important to mention that both processes can

involve each other as part of the process of improving the
sharpness of the image. In fact, we can understand the super-
resolution as a process of increasing the resolution followed by
a restoration of the edges by a deblurring process. On the other
hand, previously established definitions are fundamental to
understanding what follows.

B. Compression vs Super-compression:

We define compression as the process reduces the average
number of bit-per-pixel (bpp) of an image. In Fig. 4, we repre-
sent the set of bit-planes in which decomposes a gray or color
image. As seen in Fig. 4, the compression process does not
alter the image size [15, 16].

Fig.4: Compression.

Instead, we define supercompression as the process reduces

the average number of bit-per-pixel (bpp) of an image after
downsizing. The size reduction process is performed by down-
sampling, which takes shrinkage in rows and columns, without
obligation to respect the aspect ratio (16:9). In fact, for ISDB-
Tb (Integrated Services Digital Broadcasting) Brazilian Digital TV
System we use 5:1 as compression rate over the original compression
of the system, which uses H.264 as video compression standard [20].
When we say, we increase the standard compression 5 times,
this means that we move from a resolution of 1920x1080
(Full-High Definition: Full-HD) to another 5 times lower of
720x576 (Standard Definition: SD). The standard video com-
pression H.264 is not affected by the supercompression. As
discussed in Sub-Section D, supercompression requires mini-
mal equipment at the transmitter and the reverse procedure to
supercompression in the receiver (set-top-box) [21]. However,
the unavailability of the latter, the system is compatible, since
the receiver will send the SD signal to the Liquid Display
Crystal (LCD) TV, which naturally made upsampling obvious-
ly changing the aspect ratio, as when a Full-HD LCD TV
receive a SD signal. In Fig. 5, we represent the set of bit-pla-
nes in which decomposes a gray or color image.

As discussed in Sub-Section D, our supercompression pro-
cedure consists in two parts spread in transmitter and receiver.

Fig.5: Supercompression.

In transmitter we have three steps:
1. Video slicing: frame-by-frame
2. Downsampling
3. Video reassembling

and in receiver inside set-top-box we have four steps:
1. Receiver of streaming/H.264
2. H.264-1
3. Upsampling
4. Deblurring

In our case, the downsampling and upsampling is done with

bilinear interpolation, while the deblurring is done by a bidi-
mensional convolutive mask of NxN pixels, which makes a
rafter over the upsampled (blurred) image. The parameters of
this squared mask (where N is odd) are criticals, therefore, the
such parameters must be calculated and adjusted with total
accuracy.

In the next section, we will proceed to deduct the mask and
set the optimal relationship between its parameters. Later we
will proceed to adjust them via a Genetic Algorithm [22].

C. Deduction of the mask:

Based on the last section, the single frame is recovered after
suffering a pair of processes: downsampling and upsampling,
see left side of Fig.6. In this figure:

X t means original single frame.
Y t means recovered (blurred) single frame.
M b means square mask of NxN pixels (where N is odd).
 This mask is known as a blurred mask, smoothing ope-
 rator or Point Spread Function (PSF) [1].
Sub-index t means t-iteration.

↓ means downsampling.

↑ means upsampling.

Fig.6: Downsampling/upsampling as a blurred mask.

In these processes (↓ and ↑), the single frame is affected
by a space/time invariant blur, we which interpret as the result
of the action of a bidimensional convolution between the origi-
nal single frame and a mask known in Digital Image Pro-
cessing as a mask of mean filtering. The idea of mean filtering
is simply to replace each pixel value in an image with the mean
(`average') value of its neighbors, including itself. This has the
effect of eliminating pixel values which are unrepresentative of
their surroundings. Mean filtering is usually thought of as a
convolution filter. Like other convolutions it is based around a
kernel, which represents the shape and size of the neighbor-
hood to be sampled when calculating the mean. Often a 3×3
square kernel is used, although larger kernels (e.g. 5×5 squa-
res) can be used for more severe smoothing. (Note that a small
kernel can be applied more than once in order to produce a
similar but not identical effect as a single pass with a large
kernel). In Fig.7, we consider the most general case, for NxN
kernel, always with odd N, where:

NN ×
= 1ϕ (7)

Computing the straightforward convolution of an image

with this kernel carries out the mean filtering process.
On the basis of the above, we need an estimator to recover

the single frame of the processes affecting it. Then, for an
image affected by a bidimensional convolution with a mask as
Fig.7, we deduce that the best estimator is a Constant Model
Kalman’s filter [23].

The set of equations reflecting the above model can be
divided into two stages: the model and the estimator [23].

Fig.7: N×N averaging kernel often used in mean filtering.

Based on Fig.8, where ∆ means unitary delay for each ele-
ment of single frame Xt+1 , we have:

Model:

tt XX =+1 (8)

tbt XMY ⊗= (9)

Where⊗ means bidimensional convolution.

Estimator:

ttt KXX ε×+=+

))

1 (10)

IkK ×= (Kalman’s gain) (11)

ttt YY
)

−=ε (12)

tbt XMY
))

⊗= (13)

−− ×−=××−= ttt PkPIkIP)1()((14)

Where I means identity matrix, and 0<k<2 is a constant para-
meter to adjust. Therefore,

0Plim t
t

=
∞→

 (15)

Being O the null matrix (all its elements equal to zero), and
originally,

{ }T
ttt EP εε ×= (16)

Where E{•} represents the mathematical expectation of “•”.

On the other hand, the computational implementation of the
above set of equations involves the use of four nested for’s
plus a strict control of the stability of the Eq.14 from restrict-
ing the possible values of k, i.e., only it is possible to use
0<k<2.

Fig.8: Constant Model Kalman’s Filter.

Therefore, it is much more efficient to implement such fil-

tering through a simple bidimensional mask convolution, eli-
minating the predictor form of Eq.10, which allows much more
efficient implementations using - for example - a convolution
through the Fast Fourier Transform (FFT) [15, 16]. In conse-
quence, we need deduce such mask. If we replace Eq.13 in
Eq.12, we have,

tbtt XMY
)

⊗−=ε (17)

Now, we replace Eqs. 11 and 17 inside Eq.10, obtaining,

()tbttt XMYIkXX
)))

⊗−××+=+1 (18)

Reagrouping terms of Eq.18, and remembering a model of

low noise and linear space and time invariant blur, we have,

tdt YMX ⊗=+1

)

 (19)

Where Md is a mask as shown in Fig.9, and the following rela-
tionships to consider are very important,

1)1(2 =+×− βαN , (for deblurring) (20)

0)1(2 =+×− βαN , (for edge detection) (21)

Thus, a new and simplified model of deblurring appears on

the scene, see Fig.10, where αααα < 0 and ββββ > 1. We need to
establish precisely both parameters, then, there are two possi-
ble ways forward:

1. Choose N (integer, positive, odd and small), and ββββ > 1

(and arbitrarily less than 2), then αααα is derived from
Eq.20.

2. Start with arbitrary values of αααα and ββββ (about certain
recommendations, e.g., -0.1 < αααα < 0 and 1 < ββββ ≤ 2) and
generating a random population of the pair [αααα, ββββ], and

Fig.9: Deblurring mask M d.

Fig.10: New and simplified model of deblurring.

deducting N from Eq.20.
The mentioned pair serves of initial population for the

Genetic Algorithm [22] of Fig.11, where the pair is called
chromosome, and αααα and ββββ are called genes. The metric for the
adjustment is the Mean Squared Error (MSE), which is defined
in the next section [15, 16].

On the other hand, the employed Genetic Algorithm is com-
posed of three big modules:

a) Scoring,
b) Crossover Operator, and
c) Mutation Operator

The first consists of the following submodules:
a.1) Set-point where the error pixel-by-pixel arises
a.2) The MSE calculation with the error pixel-by-pixel
a.3) Sorting from minimum to maximum MSE
a.4) Genocide Operator eliminates the chromosomes with
 biggest MSE, i.e., there are a fixed number of chromo-
 somes that survive per cycle, the fittest. Such fixed
 number is a design parameter of the Genetic Algorithm.

The Crossover Operator (or Mating Operator) crosses the

parent chromosomes (selected randomly) generating new son
chromosomes, which will be better and/or worse than their
parents [22].

The Mutation Operator must have a low frequency of action

for the purpose of not disturbing the nature of the species, i.e.,
skip to solve another problem [22].

Fig.11: Genetic Algorithm for calculating the parameters of the mask.

D. Applications:

We present two main applications of video compression in
real time for Digital TV, according to standard ISDB-Tb [24].

In the first, we move from a resolution of 1920x1080 Full-
HD to another 5 times lower of 720x576 SD. As we have said
before, the standard video compression H.264 is not affected
by the supercompression.

The Fig.12 shows a diagram of the encoder with three
modules embedded into GPGPU cards.

Fig.12: Encoder.

Fig.13 shows in detail the employed technology for the real
implementation of Fig.12, which consists in two Quadro GPUs
[25] the first for video slicing. frame-by-frame, and the second

Fig.13: Encoder implementation with GPGPUs.

for video reassembling, respectively. The downsampling is im-
plemented on a Tesla 250 [25]. Moreover, in Fig.13:

TX means transmitter
AAC “Advanced Audio Coding”, and it is the compression
 audio format employed for ISDB-Tb [24].

On the other hand, Fig.14 shows a diagram of the decoder

implemented inside a set-top-box (STB). So that, if the STB
has the superdecompression and depending on the resolution
of the LCD TV, we obtain resolutions of High Definition (HD)
720x1280 or Full-HD 1080x1920. However, if the STB hasn’t
the superdecompression, the system must be compatible, there-
fore we obtain only SD 576x720.

The Fig.15 shows the Super-Resolution Module (SRM)
used inside STB of Fig.14, which includes upsampling and
deblurring, thus restoring the original resolution.

Fig.14: Decoder.

Fig.16 represents the real implementation of Fig.14, in

which, we can see, the set-top-box used by UNTreF, and deve-
loped by Dixar Inc [30]. This STB works equally with
Terrestrial Digital TV, IPTV, WebTV, 3DTV and Digital
Cinema. Besi-des, this STB has camera and motion sensors,
which can be used as interactive gaming platform.

Actually, we are working on an integrated circuit (chip) [26]
to replace the current GPGPU inside the STB, minimizing the
power consumption and the size of this [21, 30].

Finally, the second application of this technology presented
here is shows in Fig.17, where we use a mobile phone with
High-Definition Multimedia Interface (HDMI) video out as a
receptor.

Fig.15: Super-resolution Module (SRM).

Fig.16: Set-top-box of Dixar Inc.

Fig.17: Mobile phone as HD or Full-HD receptor.

As shows in Fig.17, we take the HDMI video out, and we

introduce it in the STB. Depending on the resolution of the
LCD TV we obtain HD o Full-HD resolutions.

The original resolution of the mobile phone employed is
Low Definition (LD) 320x240 One-Seg (one of 13 segments
that form the ISDB-T norm, see Fig.18). In this case, the addi-
tional compression rate of STB on H.264 is 27:1 [21].

Fig.18: Detail of 13 segments inside ISDB-T channel.

IV. METRICS

A. Data Compression Ratio (CR)

 Data compression ratio, also known as compression power,
is a computer-science term used to quantify the reduction in
data-representation size produced by a data compression algo-
rithm. The data compression ratio is analogous to the physical
compression ratio used to measure physical compression of
substances, and is defined in the same way, as the ratio bet-
ween the uncompressed size and the compressed size [15, 16]:

SizeCompressed

SizeedUncompress
CR = (22)

Thus a representation that compresses a 10MB file to 2MB

has a compression ratio of 10/2 = 5, often notated as an
explicit ratio, 5:1 (read "five to one"), or as an implicit ratio,
5X. Note that this formulation applies equally for compres-
sion, where the uncompressed size is that of the original; and
for decompression, where the uncompressed size is that of the
reproduction.

B. Bit-per-pixel (bpp)

 The "bits per pixel" refers to the sum of the bits in all three
color channels and represents the sum colors available at each

pixel before compression (
bc

bpp). However, as a compression

metric, the bits-per-pixel refers to the average of the bits in all

three color channels, after of compression process (
ac

bpp).

CR
bc

bpp

bc
bpp

SizeedUncompress

SizeCompressed

ac
bpp =×= (23)

Besides, bpp is also defined as

pixelsofNumber

bitscodedofNumber

ac
bpp = (24)

C. Mean Absolute Error (MAE)

 The mean absolute error is a quantity used to measure how
close forecasts or predictions are to the eventual outcomes.
The mean absolute error (MAE) is given by

∑ ∑
−

=

−

=
−=

1

0

1

0

),(),(
1 NR

nr

NC

nc
NRxNC

ncnrXncnrXMAE
)

 (25)

which for two NR×NC (rows-by-columns) monochrome ima-

ges X andX
)

, where the second one of the images is conside-
red a decompressed approximation of the other of the first one.

D. Mean Squared Error (MSE)

 The mean square error or MSE in Image Compression is
one of many ways to quantify the difference between an origi-

nal image and the true value of the quantity being decom-
pressed image, which for two NR×NC (rows-by-columns)

monochrome images X andX
)

, where the second one of the
images is considered a decompressed approximation of the
other is defined as:

∑ ∑
−

=

−

=
−=

1

0

1

0

2
),(),(

1 NR

nr

NC

nc
NRxNC

ncnrXncnrXMSE
)

 (26)

E. Peak Signal-To-Noise Ratio (PSNR)

 The phrase peak signal-to-noise ratio, often abbreviated
PSNR, is an engineering term for the ratio between the
maximum possible power of a signal and the power of
corrupting noise that affects the fidelity of its representation.
Because many signals have a very wide dynamic range, PSNR
is usually expressed in terms of the logarithmic decibel scale.
The PSNR is most commonly used as a measure of quality of
reconstruction in image compression, etc [15]. It is most easily
defined via the mean squared error (MSE), so, the PSNR is
defined as [16]:

)(10log20)
2

(10log10
MSE

XMAX

MSE
XMAX

PSNR == (27)

Here, MAXX is the maximum pixel value of the image.

When the pixels are represented using 8 bits per sample, this is
256. More generally, when samples are represented using
linear pulse code modulation (PCM) with B bits per sample
(bps), maximum possible value of MAXX is 2B-1.

For color images with three red-green-blue (RGB) values
per pixel, the definition of PSNR is the same except the MSE
is the sum over all squared value differences divided by image
size and by three [15, 16].

Typical values for the PSNR in lossy image and video
compression are between 30 and 50 dB, where higher is better.

V. SIMULATIONS

The simulations are organized in four experiments, separa-
ted in two groups: still images (for obvious reasons, however,
identical results were achieved in video, HDTV and Digital
Cinema) by color and gray. All experiments include calcula-
tions of MAE, MSE, PSNR, bpp and CR.

All these experiments involve the comparison between the

use of JPEG vs SC (JPEG+SR), and JPEG2000 vs SC
(JPEG2000+SR) for still color and gray images, in both cases
over a BMP file (which doesn’t have compression, to raw data
mode), where the used acronym means:

BMP: BitMap file format [27]
JPEG: Joint Picture Group [27]
JPEG2000: JPEG with wavelets [28]

SC: Super-compression
SR: Super-resolution

A. Group 1: Main characteristics of employed image:
File = angelina.bmp
Color = yes
Size = 1920-by-1080 pixels
Original bpp = 24

Experiment 1: JPEG vs SC (JPEG+SR)
JPEG: See Table I, column JPEG, and Fig.19 (2nd from top).

Encoder:
1. From BMP (24 bpp, 1920x1080)
2. To JPEG (0.6853 bpp, 1920x1080)

Channel/storage
Decoder:

1. From JPEG (0.6853 bpp, 1920x1080)
2. To BMP(24 bpp, 1920x1080)

SC (JPEG+SR): See Table I, column SC (JPEG+SR), and
 Fig.19 (3rd from top).

Encoder:
1. BMP (24 bpp, 1920x1080)
2. Downsampling (24 bpp, 720x576)
3. JPEG (0.1445 bpp, 720x576)

Channel/storage
Decoder:

1. JPEG (0.1445 bpp, 720x576)
2. Upsampling (0.4323 bpp, 1920x1080)
3. Deblurring (0.5004 bpp, 1920x1080)
4. BMP (24 bpp, 1920x1080)

Experiment 2: JPEG2000 vs SC (JPEG2000+SR)
JPEG2000: See Table II, column JPEG2000, and Fig.19 (4th
 from top).

Encoder:
1. From BMP (24 bpp, 1920x1080)
2. To JPEG2000 (2.6285 bpp, 1920x1080)

Channel/storage
Decoder:

1. From JPEG2000 (2.6285 bpp, 1920x1080)
2. To BMP (24 bpp, 1920x1080)

SC (JPEG2000+SR): See Table II, column SC (JPEG2000+
 SR), and Fig.19 (down).

Encoder:
1. BMP (24 bpp, 1920x1080)
2. Downsampling (24 bpp, 720x576)
3. JPEG2000 (0.8148 bpp, 720x576)

Channel/storage
Decoder:

1. JPEG2000 (0.8148 bpp, 720x576)
2. Upsampling (1.3903 bpp, 1920x1080)
3. Deblurring (2.2397 bpp, 1920x1080)
4. BMP (24 bpp, 1920x1080)

 The following tables show the metrics vs the Algorithms for
both cases, i.e., JPEG and JPEG2000 vs Supercompression.

TABLE I
ANGELINA (COLOR, 24 BPP, 1920X1080): JPEG VS SC (JPEG+SR)

Metrics JPEG SC (JPEG+SR)

MAE 0.5333 1.0009
MSE 2.3137 7.6264

PSNR 43.6693 38.2393
bpp 0.6853 0.1445
CR 35.0210 166.1154

TABLE II

ANGELINA (COLOR, 24 BPP, 1920X1080): JPEG2000 VS SC (JPEG2000+SR)

Metrics JPEG2000 SC (JPEG2000+SR)

MAE 0.0446 0.2961
MSE 0.0472 1.1385

PSNR 61.3884 47.5673
bpp 2.6285 0.8148
CR 9.1307 29.4538

B. Group 2: Main characteristics of employed image:
File = lena.bmp
Color = gray
Size = 512-by-512 pixels
Original bpp = 8

Experiment 3: JPEG vs SC (JPEG+SR)
JPEG: See Table III, column JPEG, and Fig.20 (2nd from
 top).

Encoder:
1. From BMP (8 bpp, 512x512)
2. To JPEG (0.8953 bpp, 512x512)

Channel/storage
Decoder:

1. From JPEG (0.8953 bpp, 512x512)
2. To BMP(24 bpp, 512x512)

SC (JPEG+SR): See Table III, column SC (JPEG+SR), and
 Fig.20 (3rd from top).

Encoder:
1. BMP (8 bpp, 512x512)
2. Downsampling (8 bpp, 256x256)
3. JPEG (0.2957 bpp, 256x256)

Channel/storage
Decoder:

1. JPEG (0.2957 bpp, 256x256)
2. Upsampling (0.6502 bpp, 512x512)
3. Deblurring (0.7727 bpp, 512x512)
4. BMP (8 bpp, 512x512)

Experiment 4: JPEG2000 vs SC (JPEG2000+SR)
JPEG2000: See Table IV, column JPEG2000, and Fig.20 (4th
 from top).

Encoder:
1. From BMP (8 bpp, 512x512)
2. To JPEG2000 (3.7242 bpp, 512x512)

Channel/storage
Decoder:

1. From JPEG2000 (3.7242 bpp, 512x512)
2. To BMP (8 bpp, 512x512)

Fig.19: First (top) original image, second (coded and decoded with
JPEG), third (coded and decoded with JPEG+Supercompression),

fourth (coded and decoded with JPEG2000), fifth (down, coded and
decoded with JPEG2000+Supercompression).

SC (JPEG2000+SR): See Table IV, column SC (JPEG2000+
 SR), and Fig.20 (down).

Encoder:
1. BMP (8 bpp, 512x512)
2. Downsampling (8 bpp, 256x256)
3. JPEG2000 (1.0066 bpp, 256x256)

Channel/storage
Decoder:

1. JPEG2000 (1.0066 bpp, 256x256)
2. Upsampling (1.6421 bpp, 512x512)
3. Deblurring (2.4230 bpp, 512x512)
4. BMP (8 bpp, 512x512)

 The following tables show the metrics vs the Algorithms for
both cases, i.e., JPEG and JPEG2000 vs Supercompression.

TABLE III
LENA (GRAY, 8 BPP, 512X512): JPEG VS SC (JPEG+SR)

Metrics JPEG SC (JPEG+SR)

MAE 1.0785 2.0243
MSE 4.4363 14.6230

PSNR 41.6606 36.4804
bpp 0.8953 0.2957
CR 8.9358 27.0526

TABLE IV

LENA (GRAY, 8 BPP, 512X512): JPEG2000 VS SC (JPEG2000+SR)

Metrics JPEG2000 SC (JPEG2000+SR)

MAE 0.0902 1.5312
MSE 0.0905 9.2596

PSNR 58.5647 38.4649
bpp 3.7242 1.0066
CR 2.1481 7.9475

Finally, all techniques were previously implemented in
MATLAB® R2010b (Mathworks, Natick, MA) [29] on a
Notebook with an Intel® Core(TM) i5 CPU M 520 @ 2.40
GHz processors and 2 GB RAM on Microsoft® Windows 7©
32 bits, and then in OpenCL and CUDA© of NVIDIA® [25]
on NVIDIA® Quadro 6000 + Tesla 2050 + Quadro 6000
GPUs for encoder, and NVIDIA® GTX285 GPU inside STB
of Dixar Inc [30] for decoder, as shown in Fig.16.

VI. CONCLUSION

A. Group 1:
Experiment 1: JPEG vs SC (JPEG+SR)

 In this experiment SC (JPEG+SR) has MAE, MSE and
PSNR with practically the same order of magnitude than JPEG
alone, however, bpp is five times lower, at the same time, CR
is five times higher, see Table I.

 As shown in Fig.19, the second (coded and decoded with
JPEG) and the third (coded and decoded with JPEG+Super-
compression) from the top, have the same look-and-feel and
image quality than the top, i.e., original image of Angelina.

Experiment 2: JPEG2000 vs SC (JPEG2000+SR)
We make similar considerations for this experiment, regar-

Fig.20: First (top) original image, second (coded and decoded with
JPEG), third (coded and decoded with JPEG+Supercompression),

fourth (coded and decoded with JPEG2000), fifth (down, coded and
decoded with JPEG2000+Supercompression).

ding to the last experiment, see Table II and Fig.19 (fourth
coded and decoded with JPEG2000 alone, and fifth coded and
decoded with JPEG2000+Supercompression), however, there
is a big difference between JPEG and JPEG-2000 to compress
this type of image (compare bpp and CR of Table I and II).

B. Group 2:

Experiment 3: JPEG vs SC (JPEG+SR)
In this experiment SC (JPEG+SR) has MAE, MSE and PSNR

with practically the same order of magnitude than JPEG alo-
ne, however, bpp is five times lower, at the same time, CR is
five times higher, see Table III, idem Experiment 1.

 As shown in Fig.20, the second (coded and decoded with
JPEG) and the third (coded and decoded with JPEG+Super-
compression) from the top, have the same look-and-feel and
image quality than the top, i.e., original image of Lena.

Experiment 4: JPEG2000 vs SC (JPEG2000+SR)

Identical considerations than Experiment 2 are necessary,
see Table IV and Fig.20, with the same conclusions about the
difference between JPEG and JPEG-2000 to compress this
type of image (compare bpp and CR of Table III and IV).

C. For both groups:
 We used Texture Memory inside STB [21] GPGPU to a

computational efficient implementation of the bidimensional
convolutive mask of deblurring module, allowing us to reach
TV times, i.e., a frame every 40 milliseconds.

APPENDIX

Super-resolution method is typically used to restore a high-
resolution image from several low-resolution noisy observa-
tions [3]. In this paper, we consider the interpolation of a sin-
gle image. So, we will formulate the problem as

yxA = (28)

where x is the unknown high-resolution image (represented as
a vector of pixel values), y is the known low-resolution image,
and A is the downscaling operator typically consisting of deci-
mation D following a low-pass filtering H:

HDA = (29)

The choice of the low-pass filtering operator depends on a
point spread function of the imaging system that produced the
low resolution image. If the imaging system is unknown we
will assume that operator H is a simple box filter.

A. Regularization
The Eq.28 is generally ill-posed and a small change of the

input vector y can cause a huge change of the resulting vector
x. For the Eq.28, the regularized solution is found as:

)(minarg xFyAxx
p

n
α+−= (30)

where the first term is called as “discrepancy”, F(x) is the
stabilizer and α > 0 is the coefficient of regularization [3].

The most popular and universal stabilizer is the Tikhonov
functional. It is calculated as a grid approximation of the
functional:

2

2
)(xxF ∆= (31)

and n = 2, p = 2. For each α > 0 the solution x is correct: it is
unique, defined for every y and continuously depends on y. We
can write the Euler equation for this case:

yAxAA TT =∆+)(2 (32)

But in this case the algorithm becomes linear because x is

the solution of the system of linear equations. So, this method
inherits drawbacks of linear interpolation algorithms and we
need to find more adaptive stabilizer for image resampling.

We will consider Total Variation (TV) and Bilateral TV
(BTV) stabilizers [3], which are working in l1 norm (n = 1,
p = 1):

1
)(xxTV ∇= (33)

where x∇ is the gradient operator (its modulus),

∑
=

−=

+ −γ=
pts

pts

t
y

s
x

ts xSSxxBTV
,

,
1

)((34)

where s
xS and

t
yS are shift operators along x and y axes by s

and t pixels respectively, γ = 0.8.

B. Inverse iterations
To solve the equation (30) with a stabilizer (34) the iterative

steepest-descent method can be used:

{
}

,

,

1

)()(

)(

∑
=

−=

−−+

+

−γα+

+−β−=
pts

pts

t
y

s
x

t
y

s
x

ts

TT
nn

xSSsignSSI

yDHxsignDHxx

 (35)

z = sign x is a vector with per-element applied sign function;
DT is an up-scaling operation. If D in (29) is the simplest
decimation operator that takes every k-th pixel, DT is the up-
scaling operator by zero insertion. If H in (29) is a symmetric
filtering, then HT is equal to H. x0 is the initial approximation
of the high resolution image.

ACKNOWLEDGMENT

M. Mastriani thanks Prof. Martin Kaufmann, vice chance-
llor of Universidad Nacional de Tres de Febrero, for his tre-
mendous help and support.

REFERENCES

[1] A. Gilman, D. G. Bailey, S. R. Marsland, “Interpolation Models for
Image Super-resolution,” in Proc. 4th IEEE International Symposium
on Electronic Design, Test & Applications, DELTA 2008, Hong Kong,
2008, pp.55-60.

[2] D. Glassner, S. Bagon, M. Irani. Super-Resolution from a Single Image.
Available:
http://www.wisdom.weizmann.ac.il/~vision/single_image_SR/files/singl
e_image_SR.pdf

[3] A. Lukin, A. S. Krylov, A. Nasonov. Image Interpolation by Super-
Resolution. Available:
http://graphicon.ru/oldgr/en/publications/text/LukinKrylovNasonov.pdf

[4] Y. Huang, “Wavelet-based image interpolation using multilayer
perceptrons,” Neural Comput. & Applic., vol.14, pp.1-10, 2005.

[5] N. Mueller, Y. Lu, and M. N. Do. Image interpolation using multiscale
geometric representations. Avalilable:
http://lcav.epfl.ch/~lu/papers/interp_contourlet.pdf

[6] M. Kraus, M. Eissele, and M. Strengert. GPU-Based Edge-Directed
Image Interpolation. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.69.5655

[7] -. NVIDIA CUDA: Best Practices Guide, version 3.0, 2/4/2010.
Available:
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/N
VIDIA_CUDA_BestPracticesGuide.pdf

[8] V. Podlozhnyuk. Image Convolution with CUDA, June 2007. Available:
http://developer.download.nvidia.com/compute/cuda/1_1/Website/proje
cts/convolutionSeparable/doc/convolutionSeparable.pdf

[9] V. Simek, and R. Rakesh, “GPU Acceleration of 2D-DWT Image
Compression in MATLAB with CUDA,” in Proc. Second UKSIM
European Symposium on Computer Modeling and Simulations,
Liverpool, UK, 2008, pp.274-277.

[10] T. C. Wittman, “Variational Approaches to Digital Zooming,” Ph.D.
dissertation, Dept. Math, Univ. of Minnesota, Saint Paul, MN, 2006.

[11] M. Mastriani, and A. E. Giraldez, “Microarrays denoising via
smoothing of coefficients in wavelet domain,” International Journal of
Biological and Life Sciences, vol. 1:1, pp.7-14, 2005.

[12] M. Mastriani, and A. E. Giraldez, “Enhanced directional smoothing
algorithm for edge-preserving smoothing of synthetic-aperture radar
images,” Journal of Measurement Science Review, vol.4:3, pp.1-11,
2004.

[13] M. Mastriani, and A. E. Giraldez, “Smoothing of coefficients in wavelet
domain for speckle reduction in synthetic-aperture radar images,”
ICGST-GVIP Journal, vol.5:6, pp.1-8, 2005.

[14] M. Mastriani. Directional smoothing for speckle reduction in synthetic-
aperture radar imagery. Available:
http://fundesco.eurofull.com/img/paper2.pdf

[15] R.C. Gonzalez, R.E. Woods, Digital Image Processing, 2nd Edition,
Prentice- Hall, Jan. 2002, pp.675-683.

[16] A.K. Jain, Fundamentals of Digital Image Processing, Englewood
Cliffs, New Jersey, 1989.

[17] M. Mastriani, “Denoising and compression in wavelet domain via
projection onto approximation coefficients,” International Journal of
Signal Processing, vol. 5:1, pp. 20-30, 2009.

[18] C. Kim, K. Choi, K. Hwang, and J. Beom Ra. Learning-based super-
resolution using a multi-resolution wavelet approach. Available:
http://www-isl.kaist.ac.kr/Papers/IC/ic123.pdf

[19] C. S. Boon, O. G. Guleryuz, T. Kawahara and, Y. Suzuki, “Sparse
super-resolution reconstructions of video from mobile devices in digital
TV broadcast applications,” in Proc. SPIE Conf. on Applications of
Digital Image Processing XXIX, in Algorithms, Architectures, and
Devices, San Diego, CA, Aug. 2006.

[20] I. E. Richardson, H.264 and MPEG-4 Video Compression: Video
Coding for Next Generation Multimedia, Ed. Wiley, N.Y., 2003.

[21] http://www.untref.edu.ar/carreras_de_grado/ing_computacion.htm
[22] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and

Machine Learning, Ed. Pearson, N.Y., 1989.
[23] .-, Kalman Filtering: Theory and Application, Sorenson H. W. ed., IEEE

Press, 1985, New York.
[24] http://www.forumsbtvd.org.br/
[25] NVIDIA® (NVIDIA Corporation, Santa Clara, CA).
[26] P. S. Mandolesi, P. Julian, A. G. Andreou, “A scalable and program-

mable simplicial CNN digital pixel processor architecture,” IEEE
Trans. Circuits and Systems – I: Regular Papers, Vol. 51, No. 5, pp.
988- 996, May 2004.

[27] J. Miano, Compressed Image File Formats: JPEG, PNG, GIF, XBM,
BMP; Ed. Addison-Wesley, N.Y., 1999.

[28] T. Acharya, and P-S Tsai, JPEG2000 Standard for Image Compression:
Concepts, Algorithms and VLSI Architectures, Ed. Wiley, N.Y., 2005.

[29] MATLAB® R2010b (Mathworks, Natick, MA).
[30] http://www.dixar.com.ar

Mario Mastriani was born in Buenos Aires,
Argentina on February 1, 1962. He received the
B.Eng. degree in 1989 and the Ph.D. degree in
2006, both in electrical engineering. Besides, he
received the second Ph.D. degree in Computer
Science in 2009. All degrees from Buenos Aires
University. He is Professor of Digital Signal and
Image Processing of the Engineering College, at
Buenos Aires University (UBA). Professor
Mastriani is the Coordinator of Technological

Innovation (CIT) of ANSES, and the Computer Engineering Department of
the National University of Tres de Febrero, at Buenos Aires, Argentina. He
published 50 papers. He is a currently reviewer of IEEE Transactions on
Neural Networks, Signal Processing Letters, Transactions on Image
Processing, Transactions on Signal Processing, Communications Letters,
Transactions on Geoscience and Remote Sensing, Transactions on Medical
Imaging, Transactions on Biomedical Engineering, Transactions on Fuzzy
Systems, Transactions on Multimedia; Springer-Verlag Journal of Digital
Imaging, SPIE Optical Engineering Journal; and Taylor & Francis
International Journal of Remote Sensing.
He (M’05) became a member (M) of WASET in 2004.
His areas of interest include Digital Signal Processing, Digital Image
Processing, Compression and Super-resolution.

