New wavelet-based superresolution algorithm
for speckle reduction in SAR images
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Abstract—This paper describes a novel projection algorittim,
Projection Onto Span Algorithm (POSA) for wavelesbd
superresolution and removing speckle (in wavelemaia) of
unknown variance from Synthetic Aperture Radar (PARages.
Although the POSA is good as a new superresolulgorithm for
image enhancement, image metrology and biometgatification,
here one will use it like a tool of despecklingingethe first time that
an algorithm of super-resolution is used for deklieg of SAR
images. Specifically, the speckled SAR image isodgmsed into
wavelet subbands, POSA is applied to the high suldaand
reconstruct a SAR image from the modified detaikficients.
Experimental results demonstrate that the new ndettmmpares
favorably to several other despeckling methodsesh$AR images.
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superresolution,

[. INTRODUCTION
SAR image is affected by speckle in its acquisitioil

syntheti®.

1. it depends on the correct election of the type of
thresholding (soft, hard, and semi-soft) or shrg&kae.g.,
VisuShrink, SureShrink, OracleShrink, OracleThresh,
NormalShrink, BayesShrink, Thresholding Neural Ne&v
(TNN), etc. [1]-[5],

2. it depends on the correct estimation of the thrieshod
the distributions of the signal and noise, whicle ar
unquestionably the most important design parameiérs
these techniques,

3. the specific distributions of the signal and naisay not be
well matched at different scales.

4. it doesn't have a fine adjustment of the threshdter their

calculation, and

it should be applied at each level of decomposition

needing several levels.

Therefore, a new method without these constrainits w

represent an upgrade. On the other hand, althooghkide-

rable advances has been reported in superresol@jegml],

processing. Image despeckling is used to remove thHeey have never been used as a denoising toolmaicti less

multiplicative speckle while retaining as much asgble the
important signal features. In the recent yearsetts been an
important amount of research on wavelet threshgldind

threshold selection for SAR despeckling [1], [2lechuse
wavelet provides an appropriate basis for sepayatioisy

signal from the image signal. The motivation isttha the

wavelet transform is good at energy compaction, ghell

coefficients are more likely due to noise and lazgefficient

due to important signal features [3]. These smadifficients

can be thresholded without affecting the signifidaatures of
the image. Thresholding is a simple nonlinear tepke

which operates on one wavelet coefficient at a .tilneits

basic form, each coefficient is thresholded by carimy

against threshold, if the coefficient is smallearttthreshold,
set to zero; otherwise it is kept or modified. Repig the

small noisy coefficients by zero and inverse wavibnsform

on the result may lead to reconstruction with tlsseatial

signal characteristics and with less noise.

Since the work of Donoho & Johnstone [3], there basn
much research on finding thresholds, however fesvsgeci-
fically designed for images. Unfortunately, thishirique has
the following disadvantages:
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even like a despeckling tool of SAR images, at tleas
efficiently. Nevertheless, the superresolution dthms are
frequently used for image enhancement, image nogfychnd
biometric identification, among others applicatiom$ere the
noise is present.

II. SPECKLEMODEL

Speckle noise in SAR images is usually modelledaas
purely multiplicative noise process of the form

I(r,c)=1I(r,c).S(rc)

=1(r,c).[ 1+T(rc)] (1)

=1(r,c)+ N(r,c)

The true radiometric values of the image are regesi by
I, and the values measured by the radar instrumesnt a
represented by.. The speckle noise is representedSbyhe
parameters andc means row and column of the respective
pixel of the image. If5°(r,c) = S(r,c) — 1and N(r,c) = I(r,c)
S'(r,c), one begins with a multiplicative speckeand finish
with an additive speckleN [12], which avoid the log-
transform, because the mean of log-transformedképenise
does not equal to zero [13] and thus requires ctore to
avoid extra distortion in the restored image.



For single-look SAR images is Rayleigh distributed (for
amplitude images) or negative exponentially distieiol (for
intensity images) with a mean of 1. For multi-loBRAR ima-

A and B having the same number of columns [15], by
<A, B> = trace(A B). Finally, Equations (2) and (3) repre-
sent to the POSA. The reconstructed image (in dhge the

ges with independent lookS,has a gamma distribution with adespeckling image) is the inverse of DWT-2D of #@SA

mean of 1. Further details on this noise model given in
[14].

[ll. PROJECTIONONTOSPANALGORITHM (POSA)

A. POSA in wavelet domain as a despeckling tool
(POSAshrink)

One begins decomposing the speckled SAR imagefonto
wavelet subbands [1]-[4]: Coefficients of Approxitioa (LL),
and speckled coefficients of Horizontal Detail (,HVertical
Detail (HLgy), and, Diagonal Detail (H¥ respectively, as
shown in Fig. 1, where: L means Low frequency, Hanse
High frequency, DWT-2D is the Bidimensional
Wavelet Transform, and IDWT-2D is the inverse of DID.
The four wavelet subbands are orthogonal betwesm {6]. If

Diseret

output, as illustrated in Fig.1.

On the other hand, based on Eq.(1) POSAshrink does
need log-transform [12]. Besideghe most of times, the POSA
is applied to the first level of decomposition esilely,
without the requirements of the thresholding mett®ekides,
the new method produced high quality, high-resofuimage
from a sequence of noisy, blurred and undersamfded
resolution frames. The frames are not restrictedeiog only
displaced frame each other as in [11], [16], [0} more
general motion parameters between frames may hermco-
dated using the typical models [18], [19].

B. POSA in wavelet domain as a superresolution tool

Superresolution image reconstruction refers toprexess
of reconstructing a new image with a higher resotuusing

an original image ofow-by-columnpixels is used, then eachthis collection of low resolution, shifted, rotateaind often

subbands will hav@ow/2)-by-(column/2) pixels
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Fig. 1: POSA in wavelet domain as a despeckling too

noisy observations. This allows users to see intigeil and
structures which are difficult if not impossible detect in the
raw data. Superresolution is a useful techniqua vwariety of
applications [20], and recently, researchers haggub to
investigate the use of wavelets for superresoluiimage
reconstruction [21]. A new method for superresolutimage
reconstruction based on the wavelet transform ¢esgary but
in the presence of a very particular noise, theldpd14].

1) Typical superresolution algorithm based on wetse

The typical superresolution algorithm based on \ese
produces high-resolution (HR) image from a set @i-I|
resolution (LR) frames. The relative motions in cegsive
frames are estimated and used for aligning: HR énmagons-
truction from the set of LR images by performingage
registration and then wavelet superresolution[f]-[25].

The sample points in each frame into a HR grid.rélee
various types of models [18], [19] used to represEmera
motion, namely, translation, rigid, affine, bilimeand projec-

Let {LL, LHs, HLs, HH¢} be a basis for an inner productje The most general model is the projective nhadeich

spaceW. Let
LL =LL/ ||
LHs = LHs/ || LKl 2
HLs = HLs/ || HLs]|

thus
LHg=<LHs,LL >LL
HLg = <HLs,LL >LL + < HLs, LHs>LHs

®)

HHg = <HHs,LL >LL + <HHs,LHs>LHs+ <HHs, HLs > HLs

has eight motion parameters. After registeringL&l frames
into a HR grid, the available samples distributeuraformly.

This irregular sampling is called interlaced samgliThen the
wavelet superresolution algorithm will be appliedarder to
get the HR image.

2) Proposed superresolution algorithm based onelets

A new method for superresolution image reconstouacti
based on the wavelet transform is presented ipithgence of
speckle of unknown variance. To construct the seger
lution image, an approach based on POSA is used.

Case 1:A Row x Column image is taken to be the original
HR image. A (2 x 2) sensor array without sub-pidisplace-
ment errors retrieves four Row/2 x Column/2 blurracd

where <A, B> means inner product of all real matic undersampled images (observations),{O,, Os, O}, which

are corrupted by speckle, as shown in Fig.2.



Four low resolution observations of size Row x Column
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Fig. 2: POSA in wavelet domain as a superresolutoh (with four
observations)

One low resolution observation "0" and three auxiliary
matrices "I" € [0,1], all of size Row x Column
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Let {O,, O,, Os, O;} be a basis for an inner product spaceFig' 3: POSA in wavelet domain as a superresolutioh(with one

W. Let
Or=0/1all
C=C /Il 4
Os=Gs/ I QI
thus
LL= O

LH:<02,01>01

©®)
HL=<03,0>0,+<05,0,>0;

HH=<0,,0,>0,+<04,0,>0,+<04,0>0;

observation)

IV. ASSESSMENTPARAMETERSFOR
DESPECKLING AND EDGE PRESERVATION

In this work, the assessment parameters that ad tes
evaluate the performance of speckle reduction acéseN
Variance, Mean Square Difference, Noise Mean Valase
Standard Deviation, Equivalent Number of Looks, IBe&fon
Ratio, and Pratt’s figure of Merit [26], [27].

A. NoiseMean Value (NMV), Noise Variance (NV), and
Noise Standard Deviation (NSD)

NV determines the contents of the speckle in thagen A
lower variance gives a “cleaner” image as more ldpeis
reduced, although, it not necessarily depends erintiensity.

Case 2:Now one has only one Row/2 x Column/2 blurred an@he formulas for the NMV, NV and NSD calculatiorear

undersampled image (observation), which are coedigiy

speckle, then, three auxiliary matrices are used, {A., Az}
0 [0,1] of size Row/2 x Column/2 to feed POSA, asveh in

Fig.3. Let {O, A, A, A3} be a basis for an inner product

spaceW. Let
o=o/|ql
A=Al Al 6) (
Ar=Aol || Al
thus
LL=20

LH=<A,,0>0

(7)
HL=<A,,0>0+<A, A >A

HH=<A3,0>0+<A, Ai>A +<A3,A>A

D ly(r,c)

rc

NMV = “Ric

> (14 (r,c) = NMV )*
NV = L€ e (8)
NSD = +/NV

where R-by-C pixels is the size of the despeckieagie Id .
On the other hand, the estimated noise varianagsesl to
determine the amount of smoothing needed for eask @or
all filters.

B. Mean Square Difference (MSD)

MSD indicates average square difference of the pixels
throughout the image between the original imageth(wi



speckle) dand |, see Fig. 4. A lowekSD indicates a smaller 1 N 1
difference between the original (with speckle) aledpeckled FOM = = Z 5
image. This means that there is a significantrfifierformance. max{N, Nideal} ER di a
Nevertheless, it is necessary to be very carefill thie edges.
The formula for theMSD calculation is

(12)

Where N and Ngea are the number of detected and ideal
edge pixels, respectively; id the Euclidean distance between

Z(Is(r,c) —1,(r,0)? the ith detected edge pixel and the nearest ideal ed@é p
MSD = ¢ ) anda is a constant typically set to 1/90M ranges between 0
R*C and 1, with unity for ideal edge detection.

C. Equivalent Numbers of Looks (ENL)

Another good approach of estimating the specklsenlgivel
in a SAR image is to measure tB8IL over a uniform image
region [1]. A larger value oENL usually corresponds to a
better quantitative performance. The value BRL also
depends on the size of the tested region, theatigtia larger
region will produces a highdeNL value than over a smaller
region but it also tradeoff the accuracy of thediegs. Due to
the difficulty in identifying uniform areas in thinage, we
proposed to divide the image into smaller area2%25
pixels, obtain theENL for each of these smaller areas ané
finally take the average of the&\L values. The formula for
the ENL calculation is

V. EXPERIMENTALRESULTS

A. Despeckling
Here, a set of experimental results using one ERB S

Precision Image (PRI) standard of Buenos Aires dsea
presented. For statistical filters employed aldrgy, Median,
Lee, Kuan, Gamma-Map, Enhanced Lee, Frost, Enhanced
Frost [1], [27], Wiener [5], DS [26] and Enhance® EDS)
[27], we use a homomorphic speckle reduction schgvg
with 3-by-3, 5-by-5 and 7-by-7 kernel windows. Bles, for
ee, Enhan-ced Lee, Kuan, Gamma-Map, Frost andriceka
rost filters the damping factor is set to 1 [P[{].

Fig. 4 shows a noisy image used in the experimenh f
remote sensing satellite ERS-2, with a 242-by-#2e(s) by
65536 (gray levels); and the filtered images, pseed by

ENL = (10) using VisuShrink  (Hard-Thre-sholding), BayesShrink,
NSD? NormalShrink, SUREShrink, and POSAShrink techniques
respectively, see Table I.
The significance of obtaining boMSDandENL measure- ~ All the wavelet-based techniques used Daubechies 1
ments in this work is to analyze the performanceheffiter ~wavelet basis and 1 level of decomposition (improeets
on the overall region as well as in smaller unifoggions. were not noticed with other basis of wavelets) [8], [26].
Besides, Fig. 4 summarizes the edge preservatidarpgnce
of the POSAShrink technique vs. the rest of thdnkhge

D. Deflection Ratio (DR) ) o ) techniques with a considerably acceptable commumtali
A fourth performance estimator used in this workhsDR complexity.

proposed by H. Guo et al (1994), [2]. The formuta the

! aa Table | shows the assessment parameters vs. &gs fftbr
deflection calculation is

Fig. 4, where En-Lee means Enhanced Lee FilterFiest
means Enhanced Frost Filter, Non-log SWT means Non-
DR = 1 Z[ I (r:C)_NMVj (1) logarithmic Stationary Wavelet Transform Shrinkafje?],
R*C43 NSD Non-log DWT means Non-logarithmic DWT Shrinkage Jj13
VisuShrink (HT) means Hard-Thresholding, (ST) me8o§-
The ratioDR should be higher at pixels with stronger reflec] resholding, and (SST) means Semi-ST [1]-[3].
tor points and lower elsewhere. In H. Gebals paper, this ~ 1he NMV and NSD are computed and compared over six
ratio is used to measure the performance betweeregit different homogeneous regions in the choosed SARgen

wavelet shrinkage techniques. In this paper, ttie epproach Pefore and after filtering, for all filters. _
to all techniques after despeckling in the same V@& is The POSAShrink has obtained the best mean presmrvat

and variance reduction, as shown in Table I.

Since a successful speckle reducing filter will sighnify-
cantly affect the mean intensity within a homogerseegion,
E. Pratt’s figure of merit (FOM) POSAShrink demonstrated to be the best in thisestrs The

To compare edge preservation performances of differ quantitative results of Table 1 show that the POS#AR tech-
speckle reduction schemes, the Pratt’s figure aftrieeadop- nique can eliminate speckle without distorting ubefnage
ted [26] defined by information and without destroying the importanage edges.

applied.



(a) original (b) VisuShrink

(c) BayesShrink (d) NormalShrink

(e) SUREShrin (f) POSAShrinl

Fig. 4: Original and filtered images.

In fact, the POSAShrink outperformed the converaion as shown in Table 1. Fig.5 shows the histogramshef
and no conventional speckle reducing filters inmkerof wavelet coefficients before shrinkage, after Visugh(ST),

edge preservation measured by Pratt’s figure oftrf#8], after SUREshrink, and after POSAshrink.



TABLE |

ASSESSMENTPARAMETERSVS. FILTERS FORFIG. 4.

Filter Assessment Parameters

MSD NMV NSD ENL DR FOM

Original noisy imag - 90.089( 43.€961 11.093¢ 2.5580-017 0.302:
En-Frost 564.8346 87.3245 40.0094 16.3454 4.8543e-017 0.4213

En-Lee 532.000! 87.746" 40.423: 16.867" 4.4236+-017 0.411:

Fros 543,934 87.646: 40.864! 16.533: 3.8645+017 0.421:
Lee 585.8373 87.8474 40.7465 16.846% 3.8354e-017 0.4228
Gamma-MAP 532.9236 87.8444 40.6453 16.734p 3.9243e-017 0.4312

Kuan 542.734. 87.822: 40.836: 16.962: 3.2675-017 0.421

Mediar 614.746: 85.089( 42.537: 16.746- 2.5676-017 0.400¢
Wiener 564.8346 89.8475 40.3744 16.5252 3.2345e-017 0.4423

DS 564.8341 89.535! 40.009: 17.837¢ 8.5942-017 0.457:

EDS 564.834 89.323: 40.009: 17.424. 8.9868-017 0.457:
VisuShrink (HT) 855.3030 88.4311 32.8688| 39.0884 7.8610e-016 0.4519
VisuShrink (ST) 798.4422 88.7546 32.9812 38.9843 7.7354e-016 0.4522

Visushrink (SST 743.954. 88.464: 32.999: 37.909( 7.2653+01€ 0.4521

SureShrin 716.634. 87.992( 32.897!¢ 38.302! 2.4005+01E 0.452(
NormalShrink 732.2345 88.5233 33.3124 36.8464 6.7354e-016 0.4576
BayesShrink 724.0867 88.9992 36.8230 36.0987 1.0534e-015 0.4581

Non-log SWT 300.284:. 86.323:. 43.827. 11.228! 1.5783-01€ 0.457:

Non-log DWT 341.398! 87.111. 39.416: 16.485( 1.0319+01F 0.458¢
POSAShrink 867.1277 90.0890 32.6884 39.0884 3.2675e-015 0.4591
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Fig. 5: Histograms of wavelet coefficients: (a)drefshrinkage,
(b) after Visushrink (ST), (c) after SUREshrinkda(al) after POSAshrink.




(c) High resolution image. PSNR = 26.4759 dB

(b) One of four low resolution observations
of size 128 x 128

(d) High resolution image. PSNR = 26.6993 dB

Fig. 6: High-resolution image reconstruction.

B. Superresolution

Here, a 256 x 256 image (Fig.6(a)) is taken to e t
original high-resolution image (with a resolutiorf &
meters/pixel) of Sierra Grande, Patagonia. A (2 sehsor
array without sub-pixel displacement errors re&gvJour
128 x 128 blurred and under sampled images, whieh a
corrupted by speckle with a SNR of 30 dB. One @isth
low-resolution images is shown in Fig.6(b) and image
interpolated from these low resolution images isvah in
Fig.6(c) with PSNR = 26.4759, and Fig.6(d) with FSN
26.6993.

In this experiment, we used Daubechies 4 wavelsisba
and 1 level of decomposition.

On the other hand, both experiments were implerdente
in MATLAB® (Mathworks, Natick, MA) on a PC with an
Athlon (2.4 GHz) processor.

VI. EXPERIMENTALRESULTS

A new speckle filter for SAR images based on wavele
denoising was presented. In order to convert théiptiu
cative speckle model into an additive noise moAegenti
et als approach is applied. The simulations show that t
POSAShrink have better performance than the most
commonly used filters for SAR imagery (for the sadl
benchmark parameters) which include statisticéril and
several wavelets techniques in terms of smoothimifpm
regions and preserving edges and features. Thetieéfe
ness of the technique encourages the possibilibsioiy the
approach in a number of ultrasound and radar sgijits.

In fact, cleaner images suggest potential improveséor
classification and recognition. Besides, considigraizrea-
sed deflection ratio strongly indicates improvement



detection performance.

Finally, the method is computationally efficientdacan
significantly reduce the speckle while preserving tesolu-
tion of the original image, and avoiding severalels of
decomposition and block effect.

On the other hand, the novelty of this paper isew n
projection algorithm for superresolution for unkmowlur.
The POSA is a simple algorithm with a low computail
complexity, where the blur not needs to be estithaide
novel has an excellent visual quality in preserfcgpeckle.
Such advantages were demonstrated in the simuation
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