Union is strength in lossy image compression
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The resulting compression scheme is a lossy image

Abstract—In this work, we present a comparison betweecompression. This type of compression system doesetain

different techniques of image compression. Filst,itnage is divided
in blocks which are organized according to a certstan. Later,
several compression techniques are applied, comlmnalone. Such
techniques are: wavelets (Haar's basis), Karhuroéwvé Transform,
etc. Simulations show that the combined versioestlae best, with
minor Mean Squared Error (MSE), and higher Peak&itp Noise
Ratio (PSNR) and better image quality, even inptilessence of noise.

the exact image pixel to pixel. Instead it takesamtage of
limitations in the human eye to approximate thegenao that
it is visually the same as the original. These mwdshcan
achieve vastly superior compression rates thanlesss
methods, but they must be used sensibly [41].

Lossy compression techniques generally only workl we
with real-life photography; they often give disasts results

Keywords—Haar's basis, Image compression, Karhunen-Loévgith other types of images such as line art, ot. textting an

Transform, Morton's scan, row-rafter scan.
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I. INTRODUCTION

image through several compression-decompressidescydl|
cause the image to deteriorate beyond acceptabidatds. So
a lossy compression should only be used afterraltgssing

ODERN image compression techniques often involvgas been done, it should not be used as an intéteeddorage
Discrete Wavelet Transform (DWT) [1-18] with format. Further note that while the reconstructedge looks

different scans for the wavelets subbands [19-26H athe same as the original, this is according tohin@an eye. If

Karhunen-Loéve Transform (KLT) [27-29]. While DWTE i
applied to image compression [8-11,13-16], KLT ppléed in
image decorrelation [30-34], that is to say, KLTuged inside
compression techniques of several images with b Hegree
of mutual correlation, for example, frames of matlicnages
[35], video [36, 37], and multi [30, 32-34] and teyppectral
imagery [38-40].

Many efforts have been made in the recent yeaosdar to
compress efficiently such data sets. The challénge have a
data representation which takes into account asdimee time
both the advantages and disadvantages of KLT {80 most
efficient compression based on an optimal decdiogla

Several authors have tried to combine the DWT il
KLT but with questionable success [1], with part&unterest
to multispectral imagery [30, 32, 34].

In all cases, the KLT is used to decorrelate inghectral
domain. All images are first decomposed into blpeksl each
block uses its own KLT instead of one single mafdx the
whole image. In this paper, we use the KLT for ecdeelation
between sub-blocks resulting of the applicationsadDWT
with different scans, that is to say, in the wavd@main.

a computer has to process the image in a recogrsgistem, it
may be completely thrown off by the changes [41].

On the other hands, consider the generic transtaaher in
Fig.1 consisting of a 2-D transform, quantizer, awropy
coder. We see here that loss occurs during quéintizand
after the transform. Therefore, in order to condustanalysis,
we must repeat the transform to return to the stdwgere loss
occurs and examine the effect of quantization amsfiorm
coefficients [42].
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Fig. 1 Generic transform coding for digital images

In this work, additional losses are incorporatedcause,
after of KLT applications a pruning of decorrelatd-blocks

We introduce in this paper an appropriate sequendé,app”ed before the quantization, with a statticriterion

decorrelating first the data in the spatial domasing the
DWT (Haar's basis) and afterwards in wavelet domasing

the KLT, allows us a more efficient (and robustpiesence of
noise) compression scheme.

Manuscript received September 10, 2008.

The author is with the Departamento de Computadénla Facultad de
Ciencias Exactas y Naturales de la Universidad aenBs Aires, Pabellén |,
Intendente Guiraldes 2160, Ciudad Universitarial4ZBEGA), Buenos
Aires, Argentina. phone: +54-9-11-6504-8517; fa%4+11-4015-2018; e-
mail: mmastriani@dc.uba.ar.

The Bidimensional Discrete Wavelet Transform and th
method to reduce noise and to compress by wavelet
thresholding is outlined in Section Il. Scans atdlioed in
Section Ill. KLT is outlined in Section IV. Combitians are
outline in Section V. In Section VI, we discusséeiisi the
more appropriate metrics for compression. In Sac¥d, the
experimental results using the proposed algorithne a
presented. Finally, Section VIII provides a conmuasof the
paper.



Il. BIDIMENSIONAL DISCRETEWAVELET TRANSFORM

Fig.3 shows the interior of the DWT-2D with the fou

The Bidimensional Discrete Wavelet Transform (DWD)2 subbands of the transformedage [55], which will be used in

[6], [7], [8]-[16], [43]-[56] corresponds to mulisolution

approximation expressions. In practice, mutiresotuanalysis
is carried out using 4 channel filter banks (foctedevel of

decomposition) composed of a low-pass and a higk-filler

and each filter bank is then sampled at a half (at2 down

sampling) of the previous frequency. By repeatirgs t
procedure, it is possible to obtain wavelet tramaf@f any

order.
parameter constant (equal to %2) throughout sucaessivelet
transforms so that is benefits for simple compirtgylemen-

tation. In the case of an image, the filteringpiemented in a
separable way be filtering the lines and columns.

Note that [6], [7]the DWT of an image consists of four
frequency channels for each level of decompositibar
example, foii-level of decomposition we have:

LL »;: Noisy Coefficients of Approximation.

LH , i Noisy Coefficients of Vertical Detail,

HL ,i: Noisy Coefficients of Horizontal Detail, and
HH ,i: Noisy Coefficients of Diagonal Detail.

The LL part at each scale is decomposed recursiesly
illustrated in Fig. 2 [6], [7].
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Fig. 2 Data preparation of the image. Recursivedgosition
of LL parts.

To achieve space-scale adaptive noise reductiomeed to
prepare the 1-D coefficient data stream which dostdhe
space-scale information of 2-D images. This is soinag
similar to the “zigzag” arrangement of the DCT (@&te
Cosine Transform) coefficients in image coding agtions
[46]. In this data preparation step, the DWT-2D fficients
are rearranged as a 1-D coefficient series in @lpatder so
that the adjacent samples represent the samedozad in the
original image [48].

Fig.4. Each output of Fig. 3 represents a subbdrgpldting
process of the 2-D coefficient matrix correspondimgrig. 2.

A. Wavelet Noise Thresholding

The wavelet coefficients calculated by a wavelahsform
represent change in the image at a particular uésol By
looking at the image in various resolutions it ddobe

Bossible to filter out noise, at least in theoroweéver, the

definition of noise is a difficult one.
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Fig. 3 Two dimensional DWT. A decomposition step.
Usual splitting of the subbands.

In fact, "one person's noise is another's sigral’part this
depends on the resolution one is looking at. Ogerdhm to
remove Gaussian white noise is summarized by Dondbo
and I.M. Johnstone [2], [3], and synthesized in Big

Noisy Image
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Fig. 4 Thresholding Techniques
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The algorithm is:

Calculate a wavelet transform and order the odiefits
by increasing frequency. This will result in an asrr
containing the image average plus a set of coefftsi of
length 1, 2, 4, 8, etc. The noise threshold wilch&ulated
on the highest frequency coefficient spectrum (thishe
largest spectrum).

Calculate themedian absolute deviatiofmad) on the
largest coefficient spectrum. The median is catealdrom
the absolute value of the coefficients. The equafiw the
median absolute deviation is shown below:

_ mediarf|C,; |)

D(
0.6745

mad

where G; may be LH;, HL,;, or HH,; for i-level of
decomposition. The factor 0.6745 in the denominator

rescales the numerator so thay, ., is also a suitable

estimator for the standard deviation for Gaussidmiten
noise [5], [46], [47].

For calculating the noise thresholdwe have used a
modified version of the equation that has beenudised

in papers by D.L. Donoho and I.M. Johnstone. The
equation is:

A =3, 4/ 2lod N]

where N is the number of pixels in the subimage, HL,
LH or HH.

Apply a thresholding algorithm to the coefficienthere
are two popular versions:

)

4.1. Hard thresholding. Hard thresholding sets eoeffi-
cient less than or equal to the threshold to zsee, Fig.
5(a).

Ay

Fig. 5(a) Soft-Thresholfing

wherex may be LH;, HL,;, or HH,;, y may be HH;:
Denoised Coefficients of Diagonal Detail,

HL 4;: Denoised Coefficients of Horizontal Detail,

LH 4;: Denoised Coefficients of Vertical Detail,

for i-level of decomposition.

The respective code is:

for row = 1:N
for column = 1:N
if |Cn,[row][column]| <= A,[1
Ch,[row][column] = 0.0;
end
end
end

4.2. Soft thresholding. Soft thresholding sets any
coefficient less than or equal to the thresholdeim, see
Fig. 5(b). The threshold is subtracted from any
coefficient that is greater than the threshold.sThbves
the image coefficients toward zero.
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Fig. 5(b): Hard-Thresholfing

The respective code is:

for row = 1:N
for column = 1:N
if |Cn,[row][column]| <= A,
Ch,i[row][column] = 0.0;
else
Ch,ifrow][column] = Cy i[row][column] - A;
end
end
end

M.
Fig.6 shows four different types of spatial scagnimethods

SCANS

[57, 58]. In this paper we use (a) and (d) scans.
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Fig. 6: Different space scanning methods. a) Roas{&) order,
b) Row prime order, ¢) Peano-Hilbert order, d) Mar{Z) order



In Fig.6 each numbering cell represent a sub-blatside
wavelet domain) which may be spatially ordered ypward
order) in a three dimensional matrix before KLTe §&g.7.

a1

Fig. 7: Building of 3D-matrix with sub-blocks in ward order

As can be seen from Fig.6, pixels, which have tarbated
or not with a DWT, are concentrated in blocks. Rlotusters
of 2x2, 4x4, 8x8 ... pixels, can be easily extractsidce
pixels in these blocks are transmitted one aftettar (row
ordering does not posses this valuable featureusecpixels
are transmitted serially row after row). This featican be
handy for spatial image processing, such as reésolut
reduction. In order to reduce image resolution dgaor of
two, the mean of four pixels (a 2x2 block) has te b
calculated. With these orderings (Morton and Roftery it
can be done in a simple, straightforward way, witho
requiring multiple storage elements. This calcolatcan be
expanded to blocks of sizes 4x4, 8x8 etc.

IV. KARHUNEN-LOEVE TRANSFORM(KLT)

The KLT begin with the covariance matrix of the togs x
generated between values of pixel with similarcton in all
arranged sub-blocks of 3D-matrix, as show in Fig.8.
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Fig. 8: Formation of a vector from correspondinggts in six
sub-blocks

The covariance matrix results,

Cx = E{(x-mg(x-my)} 3

with:

X = (X, X2y eee s %) T wherex is one of the correlated
original vector set‘T” indicates transpose and
nis the number of sub-blocks.

m, = E{x} is the mean vector, and wheEs} is the
expected value of the argument, and thecipt
denotes tha is associated with the populatiomof
vectors.

In the appropriate mathematical form:

rsb*csb

rnx = rsb}csb Z Xk (4)
k=1

where:
rsb is the sub-block row number
csb is the sub-block column number

On the other hands,

rsb*csb

Cy =i O, (% —m)(% —m,)"
k=1

X

®)

Therefore, KLT will be,

y=V'(x-my) (6)

with:

Y=Y Yo ...., Yn) |, wherey is one of the decorrelated
transformed vector set

V is a matrix whose columns are the eigenvecto(;of

When applying the calculus of eigenvectors, tworices
arise,V y C,, beingC, a diagonal matrix, where the elements
on its main diagonal are de eigenvalue€pof

If we wish to calculate the covariance matrix ottegsy,
results

Cy =E{(y-m,)(y-m,)"} = E{yy"} @)

Because,m, is a null vector. Besidex, is a diagonal
matrix. Depending on the correlation degree betwden
original sub-blocks, KLT will be more or less eféiot
decorrelating them. Such efficiency depends on hbe
elements of the main diagonal of the covarianceim@y, fall
in value, from right to left. The faster they fafl value, the
KLT will be more efficient decorrelating them. As axample,
based on Fig.9, which represents to Lena of 513®/pixels,
and if we work with sub-blocks of 64-by-64 pixeds we must
see in Fig.10(a), we obtain the eigenvalues of 1Bidp).
However, if by a determined method we are stafftiom the a
set of sub-blocks as those shown in Fig.10(c), tvenwill
obtain the eigenvalues of Fig.10(d). The seconé &abighly
more efficient than the first one.
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Fig. 10: Two different cases for efficiency evaloat where: (a) original set of sub-blocks of 6483 pixels,
(b) they represents their eigenvalues, (c) efficéan of sub-blocks of 64-by-64 pixels, and (d)ythepresents their eigenvalues.



The Fig.10(c)-(d) represents a set of sub-blockehmu Second CODEC
more efficient than Fig.10(a)-(b), because, thelsobks of 1. Recursive Haar application to each sub-block
the Fig.10(c)-(d) are more correlated morpholodycdh depending on the final sub-blocks size
Fig.10(c) is evident than each sub-block represetittle
version of Lena. In Fig.10(d) the last 2 sub-bloeksount
for about 95% of the total variance, while in Fi(4d) the
last 46 sub-blocks account for about 95% of theltot

. Row rafter scan
. Construction of three dimensional matrix

KLT
variance. Therefore, Fig.10(a) is a inefficient, sehile Pruni
Fig.10(c) is highly efficient. This is the reasdrat makes ) runln.g _
the KLT as efficient in multi and hyperspectral teay and . Quantization

N o 0~ WwN

very inefficient in images alone (monoframe) [1;38 32-
34, 38-41]. A method prior to KLT (for monoframeages)
which resulted in a high correlation of sub-blottismake
the KLT more efficient and will be very welcome.

On the other hands, the inverse KLT will be,

. Entropy encoding

However, starting in both codecs, What the meawoihg
“Recursive Haar application to each sub-block depand
on the final sub-blocks siZ2If we callJ to the mentioned
three dimensional matrix (see Line 3 of both CODE@rd

X=Vy+m ®) based on Fig.11 for the first level both scans matc

A complete lossy image compression algorithm based
KLT may be:

1 HL =4,
CODEC:

1. Image sub-blocking with elected scan and coottm
of three dimensional matrix.

2. KLT to resulting sub-blocks

3. Pruning of sub-blocks based on percentage aftieg
covariance matrix : 1

4., Quantization

5. Entropy encoding

To channel or storage Fig. 11: Morton’s and row rafter scanning
DECODEC: But, for the second level of Haar applications tised
6. Entropy decoding scan generates two different three dimensionalicestrJ.
9. Complete with zeros the sub-blocks pruned See Fig.12 for Morton’s scan and Fig.13 for rowaa$can.
8. Inverse KLT
9. Reconstruction of bidimensional matrix from tieaw l=u M0 ey lniiey

sub-blocks set with inverse scan and image n Tl m 2Tz TS| ez 76

reassembling.

2 2 2 2
LH =J |HH =J |LH =J_|HH =J
1" 3 1" 4 12 7 12 8
V. COMBINATIONS L

Based on the last section, the proposed solutions t 1
achieve the goal are as follows:

First CODEC

. . . LH =J (HH =J |LH_=J |HH =J
1. Recursive Haar application to each sub-block S e
depending on the final sub-blocks size
. Morton’s scan Fig. 12: Morton’s scanning

- Construction of three dimensional matrix The key of both scans and the subsequent formafion

KLT the J matrix are its subscript. While, the supépsaof LL,
LH, HL and HH Haar's sub-bands represent the lefel
s application of the DWT.

- Quantization Finally, the difference between the two will be tfwand
. Entropy encoding without noise) through simulations of Section VII.

. Pruning

N o g W N
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Fig. 13: Row rafter scanning

VI. METRICS

A. Data Compression Ratio (CR)

Data compression ratio, also known as compression
power, is a computer-science term used to quarntiéy
reduction in data-representation size produced mata
compression algorithm. The data compression rasio i
analogous to the physical compression ratio usedei@sure
physical compression of substances, and is defingtie
same way, as the ratio between tlreompressed siznd
thecompressed siZ89]:

R= Uncompressd Size
Compresse®ize

(9)

Thus a representation that compresses a 10MB dile t
2MB has a compression ratio of 10/2 = 5, often teatas
an explicit ratio, 5:1 (read "five to one"), or as implicit
ratio, 5X. Note that this formulation applies edyafor
compression, where the uncompressed size is th#teof
original; and for decompression, where the uncosyze
size is that of the reproduction.

B. Peak Signal-To-Noise Ratio (PSNR)

The phrase peak signal-to-noise ratio, oftelor@bated
PSNR, is an engineering term for the ratio betwden
maximum possible power of a signal and the power of
corrupting noise that affects the fidelity of iepresentation.
Because many signals have a very wide dynamic range
PSNR is usually expressed in terms of the logaithm
decibel scale.

The PSNR is most commonly used as a measure of
quality of reconstruction in image compression, [6&]. It
is most easily defined via the mean squared eMS8H)
which for two NRxNC (rows-by-columns) monochrome
imagesl andly, where the second one of the images is con-
sidered a denoised approximation of the otherfiseld as:

1 NR-1INC-1 2
MSE= I (nr,nc) -1 , 10
NRXNC Z_ 2 H ( ) d(nr nc)” (10)
nfr=0nc-0

The PSNR is defined as [59]:

|\/|Ax|2 MAX,
PSNR=10l0g, . (——) =20l0 11
910( MSE) 910( JM—SE) (11)

Here, MAX is the maximum pixel value of the image.
When the pixels are represented using 8 bits peplea
this is 256. More generally, when samples are sgmted
using linear pulse code modulation (PCM) with Bshger
sample, maximum possible valueMAX, is 2-1.

For color images with three red-green-blue (RGBles
per pixel, the definition of PSNR is the same exdbe
MSE is the sum over all squared value differendesled
by image size and by three [59].

Typical values for the PSNR in lossy image and @ide
compression are between 30 and 50 dB, where higher
better.

VILI.

The simulations are organized in four experimeintsall
cases where we used DWT (Haar's basis), we uséd sof
thresholding for high sub-bands coefficients shagek In
each experiment, we are going to compare sevearelft
compression techniques:

COMPUTERSSIMULATIONS

. DWT according to the Section II.

. DWT plus Morton's scan.

DWT plus row-rafter scan.

Morton's scan plus KLT.

Row-rafter scan plus KLT.

. DWT plus Morton's scan plus KLT.
. DWT plus row-rafter scan plus KLT.

NoOUAWN R

All experiments include calculations of MSE and RSN

A. Experiment 1:

Main characteristics:

Image = Lena

. Color = gray

. Size = 512-by-512 pixels

. Bits-per-pixel = 8

. Maximum compression rate = 4:1

. Sub-blocks size = 64-by-64 pixels for compreassio
techniques 46%&nd 7.

= 256-by-256 pixets Eompression

techniques 2 &nd

7. Level of decomposition for DWT alone =1

8. Noisy = no

OUAWNR

Fig.14 shows the seven techniques with originalgena
while, Fig.15 shows the sub-blocks set of the casgion
techniques 4, 5, 6 and 7 with their respective reigkies
distributions. Table | shoes the metrics (MSE, PSRl
CR) for Fig.14.
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Fig.14: Comparisson of compression techniquesorfg)nal, (b) Haar, (c) Haar + Morton's scan, (djaf+ row-rafter scan,
(e) Morton's scan + KLT, (f) row-rafter scan + KL(§) Haar + Morton's scan + KLT, and (h) Haar + mafter scan + KLT
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Fig.15 Comparisson of efficiency: (a) sub-blocksfse Morton's scan + KLT, (b) eigenvalues disttiba for Morton's scan + KLT,
(c) sub-blocks set for row-rafter scan + KLT, (tenvalues distribution for row-rafter scan + KI(€) sub-blocks set for Haar + Morton's
scan + KLT, (f) eigenvalues distribution for HaamMerton's scan + KLT, (g) sub-blocks set for Haaow-rafter scan + KLT, and
(h) eigenvalues distribution for Haar + row-rafsean + KLT




Fig.16: Comparisson of compression techniquesorig)nal, (b) Haar, (c) Haar + Morton's scan, (daf+ row-rafter scan,
(e) Morton's scan + KLT, (f) row-rafter scan + KL(§) Haar + Morton's scan + KLT, and (h) Haar + mafter scan + KLT
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Fig.17 Comparisson of efficiency: (a) sub-blocksfse Morton's scan + KLT, (b) eigenvalues disttiba for Morton's scan + KLT,
(c) sub-blocks set for row-rafter scan + KLT, (d)envalues distribution for row-rafter scan + KI(&) sub-blocks set for Haar + Morton's
scan + KLT, (f) eigenvalues distribution for HaaMerton's scan + KLT, (g) sub-blocks set for Haaow-rafter scan + KLT, and
(h) eigenvalues distribution for Haar + row-rafsean + KLT
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Fig.18: Comparisson of compression techniquesrfg)nal, (b) Haar, (c) Haar + Morton's scan, (djaf+ row-rafter scan,
(e) Morton's scan + KLT, (f) row-rafter scan + KL(§) Haar + Morton's scan + KLT, and (h) Haar + mafter scan + KLT
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Fig.19 Comparisson of efficiency: (a) sub-blocksfee Morton's scan + KLT, (b) eigenvalues disttiba for Morton's scan + KLT,
(c) sub-blocks set for row-rafter scan + KLT, (d)envalues distribution for row-rafter scan + KI(&) sub-blocks set for Haar + Morton's
scan + KLT, (f) eigenvalues distribution for HaaMerton's scan + KLT, (g) sub-blocks set for Haaow-rafter scan + KLT, and
(h) eigenvalues distribution for Haar + row-rafsean + KLT
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Fig.20: Comparisson of compression techniquesrfg)nal, (b) Haar, (c) Haar + Morton's scan, (djaf+ row-rafter scan,
(e) Morton's scan + KLT, (f) row-rafter scan + KL(§) Haar + Morton's scan + KLT, and (h) Haar + mafter scan + KLT



250 o
al
15}
1_
osf
0
(b)
S
al
15}
i
st
0
(d)
alx 10"
B_
7_
sl
5_
4t
sl
a1 H
| )
i il i i i &0
(f)
g1 ]
sl
7_
E_
sl
4t
3_
al l
| .
10 20 i a0 B0 B0
(h)

(9)

Fig.21 Comparisson of efficiency: (a) sub-blocksfee Morton's scan + KLT, (b) eigenvalues disttiba for Morton's scan + KLT,
(c) sub-blocks set for row-rafter scan + KLT, (d)envalues distribution for row-rafter scan + KI(&) sub-blocks set for Haar + Morton's
scan + KLT, (f) eigenvalues distribution for HaaMerton's scan + KLT, (g) sub-blocks set for Haaow-rafter scan + KLT, and
(h) eigenvalues distribution for Haar + row-rafsean + KLT



TABLE | TABLE llI
Experiment 1: Lena, CR = 4:1 Experiment 3: Baboon, CR = 16:1

Techniqu CR MSE PSNF Techniqu CR MSE PSNF

Haal 3.879( 26.929: 33.828¢ Haal 15.633¢ 526.053: 20.920!
Haar+Morton 3.8790 26.9291 33.8286 Haar+Morton 15.4103 524.7629 20.9312
Haar+row-rafter 3.8790 26.9291 33.8286 Haar+row-rafter 15.4103 524.7629 20.9312
Morton+KLT 3.9347 138.3011 26.7225 Morton+KLT 15.6935 818.7159 18.9995

Row-rafter+KLT 3.934% 138.301. 26.722! Row-rafter+KLT 15.693¢ 818.715! 18.999!

Haar+Morton+KL1 3.934% 13.544° 36.813: Haar+Morton+KL1 15.693¢ 489.820:« 21.230¢
Haar+row-rafter+KLT 3.9347 13.5447 36.8131 Haar+row-rafter+KLT 15.6935 489.8204 21.2304

B. Experiment 2:
Main characteristics:
. Image = Camera
. Color = gray
. Size = 512-by-512 pixels
. Bits-per-pixel = 8
. Maximum compression rate = 4:1
. Sub-blocks size = 64-by-64 pixels for comprassio
techniques 46&nd 7.
= 256-by-256 pixets Eompression
techniques 2 and
7. Level of decomposition for DWT alone =1
8. Noisy = type SALT and pepper, mean = 0, andaveei =
0.02

OO~ WNBE

Fig.16 shows the seven techniques with originalgena
while, Fig.17 shows the sub-blocks set of the ca®gion
techniques 4, 5, 6 and 7 with their respective reigkies
distributions. Table Il shoes the metrics (MSE, RSahd
CR) for Fig.16.

D. Experiment 4:
Main characteristics:
. Image = Girl
. Color = gray
. Size = 512-by-512 pixels
. Bits-per-pixel = 8
. Maximum compression rate = 16:1
. Sub-blocks size = 64-by-64 pixels for compreassio
techniques 46%&nd 7.
= 128-by-128 pixets Eompression
techniques 2 &nd
7. Level of decomposition for DWT alone =2
8. Noisy = type SALT and pepper, mean = 0, andavéei =
0.02

OO WNBE

Fig.20 shows the seven techniques with originalgena
while, Fig.12 shows the sub-blocks set of the casgon
techniques 4, 5, 6 and 7 with their respective reigkies
distributions. Table IV shoes the metrics (MSE, RShhd
CR) for Fig.20.

TABLE Il TABLE IV
Experiment 2: Camera, CR =4:1 Experiment 4: Girl, CR = 16:1

Techniqu CR MSE PSNF Techniqu CR MSE PSNF
Haar 3.4853 173.7846 25.7307 Haar 10.2376 308.1543 23.2431
Haar+Morton 3.4811 170.8111 25.8056 Haar+Morton 14.8238 467.2525 21.4353
Haar+row-rafter 3.4740 170.0747 25.8244 Haar+row-rafter 14.8439 464.3150 21.4627|

Morton+KLT 3.6347 4911751 21.2184 Morton+KLT 15693t 886.958€ 18.€51¢

Row-rafter+KLT 3.9341 487.778: 21.248€ Row-rafter+KLT 15.693! 881.5347 18.67¢4
Haar+Morton+KLT 3.9347 308.9114 23.2325 Haar+Morton+KLT 15.6935 443.9665 21.6573
Haar+row-rafter+KLT 3.9347 310.5899 23.2089 Haar+row-rafter+KLT 15.6935 460.9388 21.4944

C. Experiment 3:
Main characteristics:
. Image = Baboon
. Color = gray
. Size = 512-by-512 pixels
. Bits-per-pixel = 8
. Maximum compression rate = 16:1
. Sub-blocks size = 64-by-64 pixels for comprassio
techniques 46&nd 7.
= 128-by-128 pixets Eompression
techniques 2 a@nd
. Level of decomposition for DWT alone = 2
. Noisy = no

OO WNBE

o

Fig.18 shows the seven techniques with originalgena
while, Fig.19 shows the sub-blocks set of the casgipn
techniques 4, 5, 6 and 7 with their respective reigkies
distributions. Table Il shoes the metrics (MSENRSand
CR) for Fig.18.

Finally, all techniques (denoising and compressigele
implemented in MATLAB® (Mathworks, Natick, MA) [60]
on a PC with an Intel® Core(TM) QUAD CPU Q6600 2.40
GHz processors and 4 GB RAM.

VIIl. CONCLUSION

A first and relevant clarification is as follows, theory,
KLT ordered their eigenvalues from highest to lowes].
However, as we explained in the previous sectiom,use
MATLAB® in all our simulations, in particular theuldt-in
function "eigen”. Formally, we use it as followg,C,] =
eigenC,), to obtain matrices/ and C,. WhereC, is a
diagonal matrix, where in its main diagonal has the
eigenvalues ofC, . Such eigenvalues are ordered from
lowest to highest [60].

This does not change anything in the calculatidnthe
consistent order is respected for all the varialmeslved in
the problem context.



As shown in the Figures 15, 17, 19 and 21, althd€gh
is optimum, it is inefficient in the sub-blocks delation,
in the cases where such sub-blocks are morphologica
differents. The experimental evidence shows thatipus
DWT supplies KLT of the necessary morphologicairetff,
see Figures 14, 16, 18 and 20.

Experiment 1.

Haar, Haar+Morton and Haar+row-rafter have idehtica
metric values. Morton+KLT and row-rafter+KLT have
identical metric values. Haar+Morton+KLT and Haaws
rafter+KLT have identical metric values too.

Experiment 2:

The noise causes different metric values in allweleer,
Morton+KLT, row-rafter+KLT, Haar+Morton+KLT and
Haar+row-rafter+KLT have similar real CR.

Experiment 3:

Similar situation to Experiment 1.

In Morton+KLT and row-rafter+KLT the block effecsi
obvious, and they have a very bad look-and-feel it to
say, image quality.

Experiment 4.

Similar situation to Experiment 2.

In Morton+KLT and row-rafter+KLT the block effecti
obvious too, with similar consequences.

In the four experiments Haar+Morton+KLT is bettear
Morton+KLT, and Haar+row-rafter+KLT is better than
row-rafter+KLT.

On the other hands, without noise the scan typeltses
trivial.

As discussed earlier, the KLT is theoretically the
optimum method to spectrally decorrelate a set udf- s
blocks image. However, it is computationally expeas
Future research should be geared to the use ofrdoost
computational approaches [61-63].
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