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Several authors have tried to combine the DCT \ih

Abstract—In this work, we present a comparison between twéLT but with questionable success [1], with parkéunterest

techniques of image compression. In the first calse, image is
divided in blocks which are collected accordingzig-zag scan. In
the second one, we apply the Fast Cosine Transforthe image,
and then the transformed image is divided in bloeksch are
collected according to zig-zag scan too. Laterbath cases, the
Karhunen-Loéve transform is applied to mentioneackd. On the
other hand, we present three new metrics basedgenwalues for a
better comparative evaluation of the techniquemugitions show
that the combined version is the best, with minczal Absolute
Error (MAE) and Mean Squared Error (MSE), highealP8ignal to
Noise Ratio (PSNR) and better image quality. Finalew technique
was far superior to JPEG and JPEG2000.

to multispectral imagery [30, 32, 34].

In all cases, the KLT is used to decorrelate ingpectral
domain. All images are first decomposed into blpeksl each
block uses its own KLT instead of one single mafdx the
whole image. In this paper, we use the KLT for eaieelation
between sub-blocks resulting of the applicationsaoDCT
with zig-zag scan, that is to say, in the spectcahain.

We introduce in this paper an appropriate sequence,

decorrelating first the data in the spatial domaimg the DCT
and afterwards in spectral domain, using the KUIbwas us a
more efficient (and robust, in presence of noisghgression
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JPEG2000, Karhunen-Loéve Transform, zig-zag scan.

M crete Cosine Transform (DCT) [1-26] with differdrast
Cosine Transform (FCT) versions for a fast impletaton
[6,10,11,12,14,16,17] and Karhunen-Loéve Transf@gtiT)
[27-29]. While DCT is applied to image compressjbs2,4,6,
8-12,16,17,19-21], KLT is applied in image decatiein [30-
34], that is to say, KLT is used inside compressemhniques
of several images with a high degree of mutualedation, for
example, frames of medical images [35], video [3B], and
multi [30, 32-34] and hyperspectral imagery [38-40]

Many efforts have been made in the recent yeaosdar to
compress efficiently such data sets. The challénge have a
data representation which takes into account asamee time
both the advantages and disadvantages of KLT {88 most
efficient compression based on an optimal decdiogla

I. INTRODUCTION

Manuscript sent August 28, 2010.

Mario Mastriani is with the Grupo de Investigm sobre Procesamiento
de Sefiales e Imagenes (GIPSI), Universidad Nacidealres de Febrero
(UNTreF), 910 Florida St., Floor 6th, Room B, (CHB&T), CABA,
Argentina. phone: +54-11-4015-2295; fax: +54-118018; e-mail:
mmastriani@untref.edu.ar

Juliana Gambini is with the Instituto de Ciias¢ Universidad Nacional de

General Sarmiento (UNGS},150 St., Juan M. Gutiérrez (B1613GSX) Los
Polvorines, Buenos Aireérgentina. phone: +54-11-4469-7503; fax: +54-11-,

4469-7506; e-maijgambini@ungs.edu.ar

The resulting compression scheme
compression. This type of compression system doesetain
the exact image pixel to pixel. Instead it takesaatiage of

ODERN image compression techniques often involve Didimitations in the human eye to approximate thegenao that

it is visually the same as the original. These mwdshcan
achieve vastly superior compression rates thanless
methods, but they must be used sensibly [41].

Lossy compression techniques generally only workl we
with real-life photography; they often give disasis results
with other types of images such as line art, ot. tButting an
image through several compression-decompressidascydll
cause the image to deteriorate beyond acceptatidatds. So
a lossy compression should only be used afterraltgssing
has been done, it should not be used as an int&ataeorage
format. Further note that while the reconstructedge looks
the same as the original, this is according tohtlvman eye. If
a computer has to process the image in a recogrsjistem, it
may be completely thrown off by the changes [41].

On the other hands, consider the generic transtauher in
Fig.1 consisting of a 2-D transform, quantizer, awdropy
coder. We see here that loss occurs during quéintizand
after the transform. Therefore, in order to condustanalysis,
we must repeat the transform to return to the stedgere loss
occurs and examine the effect of quantization @amsfiorm
coefficients [42].

In this work, additional losses are incorporatedcause,
after of KLT applications a pruning of decorrelatd-blocks
is applied before the quantization, with a statéticriterion
[28].

is a lossy image
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The Bidimensional Discrete Cosine Transform andass

implementation are outlined in Section Il. Zig-zagan is
outlined in Section lll. KLT is outlined in SectiotV.
Combinations are outline in Section V. In Sectioh We

discuss briefly the more appropriate metrics fompoession.
In Section VII, the experimental results using fireposed
algorithm are presented. Finally, Section VIII poes a
conclusion of the paper.

Il. BIDIMENSIONAL DISCRETECOSINE TRANSFORM

1, ...,N-1is defined by the following relation [44]:
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Where, the signal flow graph for the forward 4x4 DC
computation, can be see on Fig.2.

Fig. 2: The signal flow graph for the forward 4x€D computation.

The Bidimensional Discrete Cosine Transform (DCT)}2D

[1,2,4,6,8-12,16,17,19-21], demostrated its supiyiin front
of Discrete Wavelet Transform to work in combinatiwith
the KLT in decorrelation and compression proced4é&s.
However, for all practical cases, it is necessafgst imple-
mentation of the same [6,10,11,12,14,16,17].

Since the 2-D DCT (typically 4 x 4, 8 x 8 and 14.&) is
the standard decorrelation transform in the int@wnal
image/video coding standards [44] it is not supgsithat
research efforts have been concentrated to deaddmpithms
for the efficient computation of 2-D DCT only. Tleethonor-
mal 2-D DCT for arN x Ninput data matrix ¥,}, m, n= 0,

The fast algorithms for the direct 8x8 DCT catation
[44] are derived using an algebraic and computatitimeore-
tical approach. First, a matrix factorization of D@ansform
matrix (1) is converted (with additions and perntiotas) to a
direct sum of matrices corresponding to certainypamial
products modulo irreducible polynomials. Then, ¢hesns-
tructions using theorems regarding the structur&rofhecker
products of Matrices are exploited to derive effici@x8 DCT
algorithms. Although a practical fast Algorithm ftite 8x8
DCT computation requires 94 multiplications and Z4&iti-
tions, Its computational structure is rather coogitd.



ll. ZIG-ZAG SCAN

Fig.3 shows the zig-zag spatial scanning methogdva]jch
is fundamental for JPEG compression algorithm [2].

0 9 B 14 |15 |27 |28

Pl

2 /4 ﬁj;’laff15 26,729,742
3 78 Az A7 25130714 743

/ /
g M A6~ 24,7131 (40,744 |53
/

100119 ~123,7132.7139, 145,152,754

' -
2071227133738 iyﬂ WBD
I

217134 7137 |47 2150 7156 27|59 | 61

s
49,757 7587|6263

35 736,748,

Fig. 3: Zig-zag space scanning method order.

In Fig.3 each numbering cell represent a sub-blatside
spectral domain) which may be spatially orderedufmvard
order) in a three dimensional matrix before KLTe §&g.4.

h3

Fig. 4: Building of 3D-matrix with sub-blocks in ward order

As can be seen from Fig.3, pixels, which have tdrbated
or not with a DCT, are concentrated in blocks. Rlotusters
of 2x2, 4x4, 8x8 ... pixels, can be easily extractsidce
pixels in these blocks are transmitted one afterttar (zig-

zag ordering, the same ordering employed in JPE@gém

compression format [2]). This feature can be hdiodspatial
image processing, such as resolution reductionortter to
reduce image resolution by a factor of two, the megafour
pixels (a 2x2 block) has to be calculated. Wits thidering
(zig-zag), it can be done in a simple, straightfndv way,
without requiring multiple storage elements. Thédcalation
can be expanded to blocks of sizes 4x4, 8x8 etc.

IV. KARHUNEN-LOEVE TRANSFORM(KLT)

The KLT begin with the covariance matrix of the tars x
generated between values of pixel with similarat@n in all
arranged sub-blocks of 3D-matrix, as show in Fig.5.

sub-block 6

sub-block 5

sub-block 4

sub-block 3

Xy sub-block 2

sub-bloclk 1

Fig. 5: Formation of a vector from correspondingefs in six
sub-blocks

The covariance matrix results,
Cy = E{(x-m,)(x-m,) "} (4)

with:

X = (X4, X2, -... » %) |, wherex is one of the correlated
original vector set‘T” indicates transpose and
nis the number of sub-blocks.

m, = E{x} is the mean vector, and wheiEf} is the
expected value of the argument, and theipt
denotes tham is associated with the populationmof
vectors.

In the appropriate mathematical form:
rsb*csb

rTlx = rsb}csb Z Xk (5)
k=1

where:
rsb is the sub-block row number
csb is the sub-block column number

On the other hands,

rsb*csb

Cy =i 2, (% —m)(% —m,)" (6)
k=1

Therefore, KLT will be,

y =V’ (x-my) (7
with:
Y=Yy Ya ..., Yn) |, wherey is one of the decorrelated

transformed vector set



V is a matrix whose columns are the eigenvectofs, of

When applying the calculus of eigenvectors, tworites
arise,V y Cy, beingC, a diagonal matrix, where the elements
on its main diagonal are de eigenvalue€of

If we wish to calculate the covariance matrix otteesy,
results

Cy = E{(y-my)(y-my)'} = E{yy"}

Because,my is a null vector. Besides, is a diagonal
matrix. Depending on the correlation degree betwten
original sub-blocks, KLT will be more or less eféot
decorrelating them. Such efficiency depends on hbe
elements of the main diagonal of the covarianceirm@, fall
in value, from right to left. The faster they fail value, the
KLT will be more efficient decorrelating them. As axample,
based on Fig.6, which represents to Lena of 513d®/pixels, Fig. 7: Original set of sub-blocks of 64-by-64 pixels
and if we work with sub-blocks of 64-by-64 pixeds we must
see in Fig.7, we obtain the eigenvalues of Fibl@wever, if
by a determined method we are starting from a $etub- 16
blocks as those shown in Fig.9, then we will obtéie 0o
eigenvalues of Fig.10. The second case is highkgrafficient
than the first one.

0s
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Fig. 8: Eigenvalues spectrum of Fig. 6

Fig. 6: Lena of 512-by-512 pixels, with 8 bits-gexel (bpp)

The Fig.9-10 represents a set of sub-blocks muche mo
efficient than Fig.7-8, because, the sub-blockshef Fig.7-8
are more correlated morphologically. Fig.7 is evident than
each sub-block represent a little version of Lénaig.10 the
first 2 sub-blocks account for about 95% of thalteariance,
while in Fig.8 the first 46 sub-blocks account &rout 95% of
the total varianceTherefore, Fig.7 is a inefficient set, while
Fig.9 is highly efficient. This is the reason thadkes the KLT
as efficient in multi and hyperspectral imagery aedy ineffi-
cient in images alone (monoframe) [21,27-34,38-3D,4

Fig.8 and Fig.10 represents the respective norethkgen-
values spectrum, i.e., divided by the first eigdneglargest). Fig. 9: Efficient set of sub-blocks of 64-by-64
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Fig. 10: Eigenvalues spectrum of Fig. 8.

A method prior to KLT (for monoframe images) which
resulted in a high correlation of sub-blocks to métke KLT
more efficient and will be very welcome.

On the other hands, the inverse KLT will be,

Xx=Vy+m, (9)
A complete lossy image compression algorithm based
KLT may be:

CODEC:

1. Image sub-blocking with zig-zag scan and coctitn
of three dimensional matrix.

. KLT to resulting sub-blocks

. Pruning of sub-blocks based on percentage afties

covariance matrix

Quantization

Entropy encoding

4.
5.

To channel or storage

DECODEC:

6. Entropy decoding

7. Zero-padding: Complete with zeros the sub-blocks
pruned

. Inverse KLT

. Reconstruction of bidimensional matrix from treav
sub-blocks set with inverse of zig-zag scaniarabe
reassembling.

V. COMBINATIONS

Based on the last section, the proposed solutiachieve
the goal is as follows:

CODEC
1. FCT-2D to image

2. Image sub-blocking with zig-zag scan and consted
tion of three dimensional matrix

3. Construction of three dimensional matrix

4. KLT

5. Pruning

6. Quantization

7. Entropy encoding

To channel or storage

DECODEC

6. Entropy decoding

7. Zero-padding: Complete with zeros the sub-blocks
pruned

8. Inverse KLT

9. Reconstruction of bidimensional matrix from the

new sub-blocks set with inverse of zig-zag scand
image reassembling
10. Inverse of FCT-2D

VI. METRICS

A. Data Compression Ratio (CR)

Data compression ratio, also known as compressioren
is a computer-science term used to quantify theigtich in
data-representation size produced by a data cosipres
algorithm. The data compression ratio is analogtmughe
physical compression ratio used
compression of substances, and is defined in time seay, as
the ratio between thencompressed siz@nd thecompressed
size[20]:

R= Uncompressl Size
- Compresse®ize

10}

Thus a representation that compresses a 10MBofiMB
has a compression ratio of 10/2 = 5, often notatsdan
explicit ratio, 5:1 (read "five to one"), or as enplicit ratio,
5X. Note that this formulation applies equally foompres-
sion, where the uncompressed size is that of tiggnat; and
for decompression, where the uncompressed sitaiof the
reproduction.

B. Bit-per-pixel (bpp)

The "bits per pixel" refers to the sum of this In all three
color channels and represents the sum colors alaitd each

pixel before compressionbppbc). However, as a compres-

sion metric, the bits-per-pixel refers to the ageraf the bits
in all three color channels, after of compressicocpss

(bppac)-

bpp Compresse&ize N

PPRyc
ac Uncompressd Size -

CR

c (11)

Besides, bpp is also defined as

to measure physical



Numbenof codedits is the sum over all squared value differences dividly image

bp (12) size and by three [20].

ac Numbeof pixels

Typical values for the PSNR in lossy image and eide

C. Mean Absolute Error (MAE) compression are between 30 and 50 dB, where higlhetter.
The mean absolute error is a quantity usedeasore how
close forecasts or predictions are to the evermuatomes. F. First Gap Percent (FGP) [45]
The mean absolute error (MAE) is given by This metric is defined as:
1 NR-INC-1 A,
MAE = YOy HI (r.ng -1 (o, nc)H (13 FGP=|1-22|x100% (16)
NRXNCnr =0nc=0 d !

which for two NRxNC (rows-by-columns) monochrome ima-whered, is the second eigenvalue, atds the first eigen-
gesl andlq, where the second one of the images is consjalue. Since the spectrum of eigenvalues is motaty
dered a decompressed approximation of the othéneofirst decreasing, if the difference betwedmndA, is large, this

one. percentual difference should be high, as is the cdis Fig.8,
and corresponds to Fig.10, where the first norradliz

D. Mean Squared Error (MSE) eigenvalue is 1, while the second coincides with ahis of
The mean square error or MSE in Image Commessi abscissae. While in the case of Fig.7, to be diffemosaics,

one of many ways to quantify the difference between this gap is percentual low, ggis neard,as shown in Fig.9.

original image and the true value of the quantiging The same figure shows that a large number of ewass

decompressed image, which for twdRxNC (rows-by- S X
. have values significantly above zero, which we @b allow
columns) monochrome imagésndly, where the second one .. . . . . . )
efficient compression by pruning, if we get ridtbé mosaics

of the Images 1S consu.jered a decompressed apfation of that contribute less to the final image at the tiofieecons-
the other is defined as: truction [45]

1 NR-1NC-1 2
> o3 Hl(nr,nc)—ld(nr,nc)u (14) G. First vs Rest Percent (FRP) [45]

MSE=
NRXNC ~ ) . )
nr=0nc=0 This metric is defined as:
E. Peak Signal-To-Noise Ratio (PSNR) FRP= (1 A=Ay j x100%
= 1- 0 17
The phrase peak signal-to-noise ratio, oftebnrebated A 17

PSNR, is an engineering term for the ratio betwéan

maximum possible power of a signal and the power @fg gives us the notion Afabout the difference between
corrupting noise that affects the fidelity of itspresentation. ) ] ) . )
Because many signals have a very wide dynamic r&?@hR /12 and/iN . This metric will be critical to assessing the
is usually expressed in terms of the logarithmicill scale. compression ratio in terms of percentage of pruniregleast
The PSNR is most commonly used as a measure dfyqafl significant eigenvalues.

reconstruction in image compression, etc [20]s Inbst easily

defined via the mean squared error (MSE), so, BB is H. First Percent (FP) [45]

defined as [20]: This last metric is defined as:

2
MAX MAX A

I\ _ [ FP =—1-x100% (18)
PSNR=10 loglo(—MSE ) = 20Ioglo(—MSE) (15) ZAi

i=1

Here,MAX is the maximum pixel value of the image. When . . . .
the pixels are represented using 8 bits per sartipteis 256. and gives us the notlon_of the weight 9f ﬂi&)r th_e entire
More generally, when samples are represented Usiegr spectrum._ It will be particularly useful in assegsiextreme
pulse code modulation (PCM) with B bits per sampleSompression rates [45].
maximum possible value MAX, is Z-1.

However, the underlying question is: can ee¢hi and

For color images with three red-green-blue (RGBlues artificial state where the last three metrics healeies close to
per pixel, the definition of PSNR is the same exdbp MSE 100%7?



VIlI. COMPUTERSSIMULATIONS TABLE I: METRICS VSKLT AND FCT+KLT

. . . . Metric KLT FCT+KLT
The simulations are organized in two sets of expents: MAE 41733 1.1105
MSE 39.5500 5.3119
Experiment 1. KLT vs FCT+KLT PSNR 32.1593 40.8783
This experiment includes calculations of followimgtrics: CR 3.9990 3.9990
1. Based on image reconstruction bpp 2.0005 2.0005
1.1. MAE etime (seq) 94.0702 93.7234
FGP 68.7584 99.7167
1.2. MSE FRP 68.7854 99.7170
1.3. PSNR . FP 30.8915 99.2517
2. Based on compression performance
2.1.CR
2.2. bpp

2.3. Elapsed time (etime)
3. Based on spectrum of eigenvalues
3.1. FGP
3.2. FRP
3.3.FP

Main characteristics:
. Image = Lena
. Color = gray
. Size = 512-by-512 pixels
. Bits-per-pixel = 8
. Maximum compression rate = 4:1
. Sub-blocks size = 64-by-64 pixels

OO, WNBE

Experiment 2: FCT+KLT vs JPEG vs JPEG2000
This experiment includes calculations of followimgtrics:

1. Based on image reconstruction

1.1. MAE

1.2. MSE

1.3. PSNR
2. Based on compression performance

2.1.CR

2.2. bpp

Fig. 11: Reconstructed image using KLT alones.

Main characteristics:
. Image = Lena
. Color = gray
. Size = 512-by-512 pixels
. Bits-per-pixel = 8
. Maximum compression rate = 10:1
. Sub-blocks size = 32-by-32 pixels for FCT+KLT

= 8-by-8 pixels fa?’HG and JPEG2000

OO~ WNPE

Experiment 1. KLT vs FCT+KLT

Based orFig. 6, which represents to Lena of 512-by-512 Isixe
with 8 bits-per-pixel (bpp), Table | shows metries KLT (alone) Fig. 12: Reconstructed image using FCT+KLT.
and combinations of FCT plus KLT.

With identical CR (3.9990) and bpp (2.0005) thet refs
metrics shows a great superiority of FCT+KLT in rfroof Fig.13 represents the error pixel-to-pixel for Klalone.
KLT alone. In facts, all metrics based on spectoiraigenva- Look at the presence of red and blue pixels wheeezero
lues demonstrated a marked improvement thankstpréssen- value is represented by green. Instead, Fig.14 sheimilar
ce of FCT before KLT. Specifically, Fig.11 repretsethe values in all pixels, that is to say, green col@p(esenting
reconstructed image using KLT alone, while Fig.@@resents zero values). This is a clear comparative advantageiovel
the reconstructed image employing FCT before KLdok at (FCT+KLT) over the version with KLT alone. This s
the block artifacts by not wearing FCT before KLT. were already known but with wavelets [43].




JPEG2000, and Fig.17 represents reconstructed imsigg
soo[ W a0 FCT+KLT.
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Fig. 13: Error pixel-to-pixel for KLT alone.

Fig. 15: Decompressed image using JPEG.
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Fig. 14: Error pixel-to-pixel for FCT+KLT.

) Fig. 16: Decompressed image using JPEG2000.
Experiment 2: FCT+KLT vs JPEG vs JPEG2000

Based on Fig.6 todable 1l shows metrics vs JPEG, JPEG2000,
and FCT plus KLT.

Though some metrics are better, we must remerhbéthe
JPEG and JPEG2000 wears blocks of 8x8 pixels, whilal
plus KLT wears (in this case) blocks of 32x3¥ith smaller
blocks, we get much higher metric JPEG and JPEG2000

TABLE II: METRICS VSFCT+KLT, JPEGAND JPEG2000

Metric FCT+KLT JPEG JPEG2000
MAE 0.7970 0.7510 0.8856
MSE 2.3781 2.0604 2.8011
PSNR 44.9242 44.9913 43.6576
CR 10.6641 4.5453 10.0061
bpp 0.7502 1.7600 0.7995

On the other hand, Fig.15 represents decorsgdeinage
using JPEG, Fig.16 represents decompressed imagg us Fig. 17: Reconstructed image using FCT+KLT.
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Fig. 18: Error pixel-to-pixel for JPEG.

500
450
an|
30|
300
20|
mf
150|
of

501

Fig. 19: Error pixel-to-pixel for JPEG2000.
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Fig. 20: Error pixel-to-pixel for FCT+KLT.

Figures 18, 19 and 20 represents error pixel-tedpicr
JPEG, JPEG2000, and FCT+KLT respectively.

Finally, all techniques were implemented in MATLAB®
(Mathworks, Natick, MA) [46] on a PC with an Intel®
Core(TM) QUAD CPU Q6600 2.40 GHz processors and4 G
RAM.

VIIl. CONCLUSION

Experiment 1: KLT vs FCT+KLT

In this experiment FCT+KLT is better than KLT aton

As shown in the Figure 11, although KLT is optimutns
inefficient in the sub-blocks decorrelation, in tteses where
such sub-blocks are morphologically differents. Tewperi-
mental evidence shows that previous FCT supplie® &l the
necessary morphological affinity, see Figure 12.

As discussed earlier, the KLT is theoretically tigimum
method to spectrally decorrelate a set of sub-lsldckage.
However, it is computationally expensive. Futureeach
should be geared to the use of lower-cost compuialtiappro-
aches [43,45].

Experiment 2: FCT+KLT vs JPEG vs JPEG2000

In this experiment, we have demonstrated than-+HLT
have the same CR than JPEG2000 but with block&-dify332
pixels vs JPEG2000 with blocks of 8-by-8 pixels.e$#,
represents a faster encoding/decoding process asrdader
number of blocks to be manipulated.

As seen in the Table Il, FCT+KLT metrics are amading
values of the metrics of JPEG and JPEG2000, witfilagi
error pixel-to-pixel (see Figures 18, 19 and 20).

Finally, the reconstructed images have a similakdand-
feel in the three cases (see Figures 15, 16 and 17)
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