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Abstract—In this work, we developed the concept of superon Graphics Processing Units (GPGPU) cards. Spatifj

compression, i.e., compression above the compressimdard used.
In this context, both compression rates are migghlin fact, super-
compression is based on super-resolution. Thab isaly, super-
compression is a data compression technique thergose spatial
image compression on top of bit-per-pixel comp@ssio achieve
very high compression ratios. If the compressidiora very high,

then we use a convolutive mask inside decoder thstores the
edges, eliminating the blur. Finally, both, the asher and the
complete decoder are implemented on General-Puigmsgutation

on Graphics Processing Units (GPGPU) cards. Spallifi the

mentio-ned mask is coded inside texture memory@®P&PU.

the mentioned mask is coded inside texture memdra o
GPGPU [1, 9-12].

The Bilinear Interpolation is outlined in Sectidn Where
we discuss the problem of interpolating visuallycegtable
images at a higher resolution. We first presentirtterpola-
tion problem and why linear interpolation filterseanade-
quate for image data. To represent the major mattieah
approaches to image processing, we discuss andaggdlve
different image interpolation methods. Super-resolusicime-
me for compression including linear interpolatioe autlined
in Section Ill. Metrics are outlined in Section I8imulations

Keywords—General-Purpose computation on Graphics Procesgre gutline in Section V. Finally, Section VI prdes a conclu-

ing Units, Image Compression, Interpolation, Sugselution.

|. INTRODUCTION

SUPERCOMPRESSIONepresentS the most revolutionary con-

cept in image and video compression [1]. This cphig
based on two simple principles: a) Downsamplingdopaing,
i.e., spatial decimation, and b) deblurring, sugselution, or
sharpening [2-6]. While the first was performedngsbilinear
interpolation, the second we do through a horidorafter
with a convolution mask, which is based on the Cittert's
iterative algorithm [7, 8], and an improvement (+itamative)
that makes the mentioned algorithm computationatbye effi-
cient, and which was developed by our team [1].

Specifically, the super-compression is a combimatibtwo
compressions, i.e., the spatial decimation andc:timepression
of the employed standard. Therefore, the super-cessjpn is
a compression above the compression standard Ursehis
context, both compression rates are multiplied. eBapm-
pression is based on super-resolution, becausgréases the
compression on the basis of a reduction in sizthefimage
(or frame, in the case of videos) [1].

That is to say, super-compression is a lossy cessin
technique that superpose spatial image compressidop of
bit-per-pixel compression to achieve very high cogspion
ratios. If the compression ratio is very high, thee use a
convolutive mask inside decoder that restores ttgeg
eliminating the blur. Finally, both, the encodeddhe comple-
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sion of the paper.

Il. BILINEAR INTERPOLATION

Bilinear interpolation is by far the most commoteipola-
tion method [1-6]. The idea is to interpolate alamg dimen-
sion using values that were themselves interpolatedg the
other dimension, see Fig.1.

Fig.1: Bilinear interpolation.

If we have values atx( yo) and &, yi1), then we could
linearly interpolate along the vertical line. Thésnot a pro-
blem, just generate them by interpolating alonghthiézontals.

Zo=(1-a)Zo+tazo o= X—X) (X —X)
Za=(l-0)zp1+azy

Zy=(1-p)z0+p 21

(1)
B=—Yo)/(yr — Yo)

Note that it does not matter whether we interpofatess
and then down or down and then across (i.ex dinst ory
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This is bilinear interpolation. It results in a pésvise func-
tion that is not piecewise linear—of course it ¢d0®, because
it matches the data at four different points, amee points
uniquely determine the linear function. It has acgi for each
cell in the grid of data points, but the interpmat defined
over that rectangle is not linear. Look at this moecent
equation, remembering thatis a linear function ok andg is
a linear function ofy. The full expression fog,, is going to
contain a constant term, anterm, ay term, and ay term.
Because of the presence of this last term is neali.

This kind of function is called bilinear becausesitinear as

a function ofx wheny is held fixed and also linear as a

function ofy whenx is held fixed. The quality is obvious, see
Fig.2.

Fig.2: Image interpolation using bilinear methodraérp2 built-in
MATLAB® function. Top: original image. Medium: clesup of
eye in image. Down: interpolated image.

Ill. SUPERRESOLUTIONSCHEME FOR COMPRESSION

This section is organized into four parts, for #dreunders-
tanding of the concepts:

A. Super-resolution vs Deblurring,

B. Compression vs Super-compression,

C. Deduction of the mask

D. Applications

A. Super-resolution vs Deblurring:

As we saw in Section I, there is much confusiomvken the
concepts of super-resolution and deblurring in faigimage
Processing [13, 14]. We are going to establish h&oerigo-
rous definitions for the purpose of eliminatingstbbnfusion.

We say that a process is super-resolution if itoess the
sharpness of an image involving an increase inréselution
of the samé§l-6, 13, 14].

We say that a process is deblurring if it restottes sharp-
ness of an image not involving an increase in geolution of
the same. This process is applied when the imaggpsbass
suffers an aberration called blyt3, 14] which comes from a
high relative speed of the object in focus in lielatto the
camera, fast opening and closing the shutter, etc.

We consider important to mention that both processm
involve each other as part of the process of impmihe
sharpness of the image. In fact, we can understanduper-
resolution as a process of increasing the resoldtibowed by
a restoration of the edges by a deblurring proceashe other
hand, previously established definitions are funelatad to
understanding what follows.

B. Compression vs Super-compression:

We define compression as the process reduces #ragey
number of bit-per-pixel (bpp) of an image. In F3g.we repre-
sent the set of bit-planes in which decomposesag gr color
image. As seen in Fig. 3, the compression process ot
alter the image size [13, 14].

Instead, we define supercompression as the proedases
the average number of bit-per-pixel (bpp) of angmafter
downsizing. The size reduction process is perfortnedown-
sampling, which takes shrinkage in rows and colymiithiout
obligation to respect the aspect ratio (16:9).dct,fforISDB-
Tb (Integrated Services Digital Broadcasting) BraniliRigital TV
System we use 5:1 as compression rate over thmalrigpm-
pression of the system, which uses H.264 as videgpoess-
ion standard [15]. When we sawe increase the standard
compression 5 timeshis means that we move from a resolu-
tion of 1920x1080 (Full-High Definition: Full-HD)tanother
5 times lower of 720x576 (Standard Definition: SOhhe
standard video compression H.264 is not affectedthzy
supercompression. As discussed in Sub-Section [eream-
pression requires minimal equipment at the trarisméind the
reverse procedure to supercompression in the rrcéet-top-
box) [16].



Several
bit-planes

Average
reduction

in bpp

/

Fig.3: Compression.

However, the unavailability of the latter, the eyst is
compatible, since the receiver will send the Shhaigo the
Liquid Display Crystal (LCD) TV, which naturally rda
upsampling obviously changing the aspect ratiowhen a
Full-HD LCD TV receive a SD signal. In Fig. 4, wepresent
the set of bit-planes in which decomposes a gragaor
image.

As discussed in Sub-Section D, our supercompregsion
cedure consists in two parts spread in transnatidrreceiver.

In transmitter we have three steps:

1.Video slicing: frame-by-frame
2. Downsampling
3. Video reassembling

and in receiver inside set-top-box we have foupste

1. Receiver of streaming/H.264
2.H.264"

3. Upsampling

4. Deblurring

Inour case, the downsampling and upsampling i€ adth
bilinear interpolation, while the deblurring is doloy a bidimen-

Shrinkage of frame:
reduction in the
number of pixels
by rows and
columns
(downsampling)

Several
bit-planes

Average
7 reduction

/  inbpp

Fig.4: Supercompression.

sional convolutive mask of NxN pixels, which malesafter
over the upsampled (blurred) image. The paramettihis
squared mask (where N is odd) are criticals, tloeeefthe such
parameters must be calculated and adjusted widt &amicu-
racy.

In the next section, we will proceed to deductnteesk and
set the optimal relationship between its parameteater we
will proceed to adjust them via trial and error.

C. Deduction of the mask:

Based on the last section, the single frame isvered after
suffering a pair of processes: downsampling ancmpsing,
see left side of Fig.3n this figure:

Xt means original single frame.

Y: means recovered (blurred) single frame.

My means square mask of NxN pixels (where N is odd).
This mask is known as a blurred mask, smagtbhpe-
rator or Point Spread Function (PSF) [2].

Sub-indext meang-iteration.



| means downsampling. & =Y, -M,, 0OX 9)

1 means upsampling.
Now, we replace Eq. 9 inside Eq.5, obtaining,

downsampling
Xt Yt Xt Yt % % Y%
X=X +Ax[Y, =M, OX (10)
:> \l/ /I\ > E I > Md/“ :> t+1 t ( t d/u t)
upsampling Reagrouping terms of Eq.10, and remembering a mofdel

low noise and linear space and time invariant blier have,
Fig.5: Downsampling/upsampling as a blurred mask.

X, =M. OY, (11)

In these processes (and 1 ), the single frame is affected
by a space/time invariant blur. On the basis of,thie need an
estimator to recover the single frame of the preegsffecting
it. Then, for an image affected by a downsamplipgampling
as Fig.5, we deduce that the best estimator i¥émeCittert's )
recursive algorithm [7, 8]. (N"=D)xa+ =1, (for deblurring) (12)

The set of equations reflecting the above model loan (N2 ~)xa+ =0, (for edge detection) (13)
divided into two stages: the model and the estinfafo

Based on Fig.5, we have:

WhereM; is a mask as shown in Fig.6, athé following rela-
tionships to consider are very important,

Thus, a new and simplified model of deblurring appeon
the scene, see Fig.7, whege< 0 and 8> 1. We need to
establish precisely both parameters, then, therdvew possi-

t ®) ble ways forward:

0 X, (4)

<
Q

el:
=X
Md/

(0]

Xt+1

Y =

t ) 1.Choose N (integer, positive, odd and small), #hel 1
(and arbitrarily less than 2Yhen ais derived from
Eq.12.

2. Start with arbitrary values ofr and B (about certain
recommendations, e.g., -la<0and 1< 8 <2) and
generating a random population of the pairff], and

Wherell means bidimensional convolution, andy, repre-
sents a convolutive and unknown mask which summestize
combined action of downsampling and upsamplingttueye

Estimator: deductingN f Eq.12
S o eductingN from Eq.12.
Xt+l_xt+/1x€t ®)
Et :Yt_Yt (6) o e | (1 oL oL eee | (L
Yt:Md/qut (7) - .. - : M o. .
Where & A<2 is a constant parameter to adjust. Therefore, o |leee| o | o0 | a0 |see| o
)20 :Y (8) oL ese (04 n o s (04
On the other hand, the computational implementatiotme O [eee| O | O | O |eoee| O
above set of equations involves the use of foutedd®r’s : . . . . .
plus a strict control of the stability of the Eq(®@ith a A : : : ‘e o
predictor form) from restricting the possible vaduef 4, i.e.,
only it is possible to use Ok<2. O oo ] O[O0 O Jeee) O

Therefore, it is much more efficient to implemeantls fil-
tering through a simple bidimensional mask convofyteli-
minating the predictor form of Eq.5, which allowsich more

efficient implementations using - for example -anweolution formed an up-scaling of the image, and second, ppéyahe
through the Fast Fourier Transform (FFT) [13, I4]conse- e Fig.6 on the middle imr;lge thus ob’léia much
quence, we need deduce such mask. If we replace iEq. higher quality final image [1] ' '

Eq.6, we have,

Fig.6: Deblurring mask ¢

The action of this mask can be seen in Fig.8. Rivetper-
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Fig.7: New and simplified model of deblurring.
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Fig.8: Our technology with super-resolution
D.Applications:

We present three main applications of video congioesn
real time for Digital TV, according to standard I80b [17].

In the first,we move from a resolution of 1920x1080 Full-

HD to another 5 times lower of 720x576 SD. As weehsaid
before, the standard video compression H.264 isaffetted
by the supercompression.

The Fig.9 shows a diagram of the encoder with thmedu-
les embedded into GPGPU cards [1, 9-12]. In faet,work
with three GPUs in the encoder.

For starters, the camera delivers pictures withsalution of
1920x1080 pixels HD-SDI, SDI which means Serial ifaig
Interface [1].

The first GPU performs a separation of the framethe
video, frame by frame. This procedure is calleceuviglicing
[1]. This allows us to individually access eachrfeato apply
downsampling.

The above sampling is conducted in the second G&U,
which, we have selected NVIDIA ® Tesla 2050 [18] &rict
customer requirements (see Fig.10), however, caocabged
out the same downsampling with a much less powediudl
therefore much less expensive NVIDIA ® GPU, withauy
problem.

By downsampling, we pass from a resolution of 19280
pixels to another 5 times less, i.e. 720x576. Tikab say,
from Full-HD to SD. Therefore, we achieve lower taite (and
therefore the bandwidth used) 5 times.

This seemingly arbitrary compression ratio and céidn of
Full-HD format to SD is required by the Argentinevgrn-
ment, so that if a user does not have our decod@mnjoy the
SD broadcast. In this case is the same TV who miileespsca-

HD-SDI: 1080x1920

video slicing: frame-by-frame

¥

From 1080x1920 to 576x720
(downsampling)
¥

GPGPU

video reassembling

SD-SDI: 576x720

A

Fig.9: Encoder.

ling, with an obvious change in the original aspetio, i.e.,
from 16:9 to 4:3.

A very important aspect to consider is that thiscedure
does not require any kind of color transform, iie.works
directly on the RGB (reed, green and blue) comptmef
each frame. This eliminates the two possible caioas and
thus the computational cost they entail.

We used Texture Memory of GPGPU to a computational
efficient implementation of the different modulef emcoder
and decoder, allowing us to reach TV times.

Fig.10 shows in detail the employed technologytifer real
implementation of Fig.9, which consists in two Qua&GPUs
[18] the first for video slicing. frame-by-framendithe second



Quadro GPU
(video slicing:
frame-by-frame)

Tesla 2050
(donwsampling)

Quadro GPU
(video reassembling)

SD-SDI: 576x720

X

Fig.10: Encoder implementation with GPGPUs.

for video reassembling, respectively. The downsargps im-
plemented on a Tesla 250 [18]. However, currently,have
found a way to perform this experiment using omg Quadro
GPU. Moreover, in Fig.10:

TX means transmitter

On the other hand, Fig.11 shows a diagram of tleedkr
implemented inside a set-top-box (STB). So thathé& STB
has the superdecompression and depending on tbleities
of the LCD TV, we obtain resolutions of High Defion (HD)
720x1280 or Full-HD 1080x1920. However, if the Sh&sn't
the superdecompression, the system must be corepalkibre-
fore we obtain only SD 576x720.

SD: 576x720 (streaming/H.264)

H.264
1 set-top-box (STB) :
Algorithim 75"
no @ yes
no
SRM [SRM]
Rest of STB

functionalities

Full-HD: 1080x1920
Fig.11: Decoder.

Fig.13 represents the real implementation of Fig.il
which, we can see, the set-top-box used in thiskwdeve-
loped by Dixar Inc. [16]. This STB works equallytviTerres-
trial Digital TV, IPTV, WebTV, 3DTV and Digital Ciema.
Besides, this STB has camera and motion sensoishwhan
be used as interactive gaming platform.

Actually, we are working on an integrated circeittip) [19]
to replace the current GPGPU inside the STB, miimgi the
power consumption and the size of this [16].

Finally, the second application of this technolqygsented

The Fig.12 shows the Super-Resolution Module (SRM)gre is shows in Fig.14, where we use a mobile @heith

used inside STB of Fig.11, which includes upsangplémd
deblurring, thus restoring the original resolution.

High-Definition Multimedia Interface (HDMI) videout as a
receptor.



upsampling Mobile phone with HDMI video out

one-seg/streaming/H.264

v A
H.264
set-top-box :

deblurring

Fig.12: Super-resolution Module (SRM). fﬁﬁﬁig‘i;?ﬁs

of  FullHD LCD

Fig.14: Mobile phone as HD or Full-HD receptor.

As shows in Fig.14, we take the HDMI video out, angl
introduce it in the STB. Depending on the resohlutaf the
LCD TV we obtain HD o Full-HD resolutions.

The original resolution of the mobile phone emptbyie
Low Definition (LD) 320x2400ne-Seglone of 13 segments
that form the ISDB-T norm, see Fig.15). In thisesabie addi-
tional compression rate of STB on H.264 is 27:1.[16

[SDB-T channel, segment and program allocation

UHF band: 50 channels
470 MHz areMHz @52 MHr 455 MMz PSeMH P53 MM peaMHz 70 MHz

12 ch. 14ch. 15 ch. K) j &0 ch. 61 ch. 62 ch.

(5,617 carriers / ch.)

-~ I3segments————— =

sz s11 S5 | 53 | 51| 50| sz | s4f s s s11 | 53

(

= | sz

ss’s?

- -
430 KEz grard bard 5.57 W Hz bandwidth ."I ch. 430 Hz grard band
428 WHz bandswridth fsegroent

(Tlax. 432 carviers /segroent)

lseg program (sinsle segment)

Fig.15: Detail of 13 segments inside ISDB-T channel

Fig.13: Set-top-box of Dixar Inc.



Finally, the third and last application of this teclogy
presented here is shows in Fig.16 (at the end isfhper),
which constitutes the modern Digital TV System 4k-&esig-
ned for Argentine government, which has the sarfwerimation
rate 8k monochannel.

All encoders currently in use (without exceptioeuntra

IV. METRICS

A.Data Compression Ratio (CR)

Data compression ratio, also known as compressiovep
is a computer-science term used to quantify theigtieh in
data-representation size produced by a data cosipnesalgo-

and interframe compression simultaneously, even emod fithm. The data compression ratio is analogoui¢ophysical
European coder known as HEVC/H.265 (High EfficiencgOmpression ratio used to measure physical compress

Video Coding), and which will begin testing in 2013
The interframe compression is composed of threespar

1. Scene detection
2. Motion detection
3. Region of Interest (ROI detection)

These three modules are responsible for the delayik as
latency, which for European system of digital TVolwed as
DVB (Digital Video Broadcasting) is 5.5 seconds,iletfor
the Brazilian system of digital TV knowed as ISDB-3ystem
is 4.5 seconds.

If an encoder such as H.264 is used for 3D-4k,,thus
latency would be between 25 and 35 seconds. Thisascep-
table.

At this point, we define latency as the delay betwe¢he
digital and analog transmission.

On the other hand, H.264 was originally designedvideo
transmission of low and medium resolution. In fdet, trans-
mission for 2k resolution and up, it has shortcasjrmorpho-
logical defects, and chromatic aberrations. Thatbisay, it
does not fit the 4K-3D, as well as other codecs.

This is the reason that since 2k resolutions cdy ose
intraframe compression, especially the JPEG200@c¢2i1,
22].

Since it can not serve interframe compression, ,thiea
compression rates obtained are very low, with thending
disproportionate bandwidth of the channel for traissions of
this type.

Moreover, given that the Argentine government wsske
reuse the digital TV platform installed of Full-HEhen the
only viable solution that meets all boundary coindi is one
based on supercompression [1].

substances, and is defined in the same way, amtiwebet-
ween thauncompressed siznd thecompressed siZé&3, 14]:

Uncompressd Size
R= - [14
Compresseéize

Thus a representation that compresses a 10MBofiMB
has a compression ratio of 10/2 = 5, often notatsdan
explicit ratio, 5:1 (read "five to one"), or as amnplicit ratio,
5X. Note that this formulation applies equally foompres-
sion, where the uncompressed size is that of tiggnat; and
for decompression, where the uncompressed sitmiof the
reproduction.

B.Bit-per-pixel (bpp)

The "bits per pixel" refers to the sum of thts lin all three
color channels and represents the sum colors alaié each

pixel before compressiorbppbc). However, as a compression

metric, the bits-per-pixel refers to the averag¢hefbits in all
three color channels, after of compression pro(:bﬁpac).

Compresseize _ by,

b = 15
ppac Uncompressd Size c CR (15)
Besides, bpp is also defined as
Numbeiof codedbits
bpp = . (16)
ac Numbewof pixels

C.Mean Absolute Error (MAE)
The mean absolute error is a quantity usedeasore how

As shown in Fig.16, we have two images of 3840x2160ose forecasts or predictions are to the everpuétomes.

pixeles, one for right eye and one for left eye, i total
resolution of 3840 x 2160 x 2 (i.e., stereo). Wstfperformed
the downsampling, obtaining two images of 1920x1686h,
which are encoded in H.264 and sent to the tratesmi®nce
the receiver, upsampling and deblurring is appliedboth
images, thereby restoring the original resolution.

That is to say, we lower the bit rate of the twageas com-
bined with a quarter of its value, but, howeverthbimmages of
1920x1080 combined occupy about 60% of the bit théd
would occupy the original image transmitted by atesn of
single-channel Full-HD. This turns out to be a prcidarising
from the characteristics of the method itself (hich creates
a seamless smoothing.

The mean absolute error (MAE) is given by

1 NR-INC-1 ~
NRXNCZ > Hx(nr,nc)—x(nr,nc)”

nr=0nc=0

MAE=

(17)

which for two NRxNC (rows-by-columns) monochrome ima-

gesX andX , where the second one of the images is conside-
red a decompressed approximation of the othereofittst one.

D. Mean Squared Error (MSE)

The mean square error or MSE in Image Compesisi
one of many ways to quantify the difference betwaeoriginal
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Fig.16: Detail of the resolutions involved in th@pose 4k-3D TV System.



image and the true value of the quantity being depeessed
image, which for twaNRxNC (rows-by-columns) monochro-

me imagesX andX , where the second one of the images i
considered a decompressed approximation of ther dthe
defined as:

1 NR-INC-1
NRxNC 2 z

nr=0nc=0

MSE=

Hx(nr,nc) - >Z(nr,nc)”2 (18)

SC: Super-compression

SR: Super-resolution

> A. Group 1:Main characteristics of employed image:
File = angelina.bmp

Color = yes

Size = 1920-by-1080 pixels

Original bpp = 24

Experiment 1: JPEG vs SC (JPEG+SR)

JPEG: See Table I, column JPEG, and Fig.17 {@®m top).

E.Peak Signal-To-Noise Ratio (PSNR)

The phrase peak signal-to-noise ratio, oftelrebated
PSNR, is an engineering term for the ratio betwées
maximum possible power of a signal and the power
corrupting noise that affects the fidelity of itspresentation.
Because many signals have a very wide dynamic rdfgeR
is usually expressed in terms of the logarithmiciloel scale.
The PSNR is most commonly used as a measure afyqaél
reconstruction in image compression, etc [13]s Iniost easily
defined via the mean squared error (MSE), so, BN is
defined as [14]:

PSNR=10I (MAX>2<) 201 (MAXX) (19)
00, A(——2) =20lo
%0 msE 90" JmsE

Here, MAXx is the maximum pixel value of the image.
When the pixels are represented using 8 bits peplea this is
256. More generally, when samples are represensiug u
linear pulse code modulation (PCM) with B bits pample
(bps), maximum possible value MAXy is 2-1.

Encoder:
1. From BMP (24 bpp, 1920x1080)
2. To JPEG (0.6853 bpp, 1920x1080)

of Channel/storage

Decoder:
1. From JPEG (0.6853 bpp, 1920x1080)
2. To BMP(24 bpp, 1920x1080)

SC (JPEG+SR): See Table I, column SC (JPEG+SR), and

Fig.17 tdrom top).

Encoder:

1. BMP (24 bpp, 1920x1080)

2. Downsampling (24 bpp, 720x576)

3. JPEG (0.1445 bpp, 720x576)
Channel/storage
Decoder:

1. JPEG (0.1445 bpp, 720x576)

2. Upsampling (0.4323 bpp, 1920x1080)

3. Deblurring (0.5004 bpp, 1920x1080)

4. BMP (24 bpp, 1920x1080)

Experiment 2: JPEG2000 vs SC (JPEG2000+SR)

JPEG2000: See Table I, column JPEG2000, and Fig.17 (4

For color images with three red-green-blue (RGBlues
per pixel, the definition of PSNR is the same exdbp MSE
is the sum over all squared value differences dwily image
size and by three [13, 14].

Typical values for the PSNR in lossy image and eide
compression are between 30 and 50 dB, where higetter.

V.SIMULATIONS
The simulations are organized in four experimes¢para-

from top).

Encoder:

1. From BMP (24 bpp, 1920x1080)

2. To JPEG2000 (2.6285 bpp, 1920x1080)
Channel/storage
Decoder:

1. From JPEG2000 (2.6285 bpp, 1920x1080)

2. To BMP (24 bpp, 1920x1080)

SC (JPEG2000+SR):See Table II, column SC (JPEG2000+

ted in two groups: still images (for obvious reasdmowever,
identical results were achieved in video, HDTV dbigjital

Cinema) by color and gray. All experiments inclumgcula-
tions of MAE, MSE, PSNR, bpp and CR.

All these experiments involve the comparison betwtde

SR), and Fig(tiown).
Encoder:
1. BMP (24 bpp, 1920x1080)
2. Downsampling (24 bpp, 720x576)
3. JPEG2000 (0.8148 bpp, 720x576)

Channel/storage

use of JPEG vs SC (JPEG+SR), and JPEG2000 vs SCDecoder:

(JPEG2000+SR) for still color and gray images, athbcases
over a BMP file (which doesn’t have compressiomaw data
mode), where the used acronym means:

BMP: BitMap file format [20]
JPEG: Joint Picture Group [20]
JPEG2000: JPEG with wavelets [21, 22]

1. JPEG2000 (0.8148 bpp, 720x576)

2. Upsampling (1.3903 bpp, 1920x1080)
3. Deblurring (2.2397 bpp, 1920x1080)
4. BMP (24 bpp, 1920x1080)

The following tables show the metrics vs thgakithms for
both cases, i.e., JPEG and JPEG2000 vs Supercaigures



TABLE |
ANGELINA (COLOR, 24 BPP, 192(x1080):JPEGvS SC(JPEG+SR)

Metrics JPEG SC (JPEG+SR)

MAE 0.5333 1.0009

MSE 2.3137 7.6264

PSNR 43.6693 38.2393

bpp 0.6853 0.1445

CR 35.0210 166.1154

TABLE Il
ANGELINA (COLOR, 24 BPP, 1920x1080):JPEG2000/s SC(JPEG2000+SR)

Metrics JPEG2000 SC (JPEG2000+SR)

MAE 0.044¢ 0.296:

MSE 0.047: 1.138¢

PSNR 61.3884 47.5673

bpp 2.6285 0.8148

CR 9.1307 29.4538

B. Group 2:Main characteristics of employed image:
File = lena.bmp
Color = gray
Size = 512-by-512 pixels
Original bpp =8

Experiment 3: JPEG vs SC (JPEG+SR)
JPEG: See Table IIl, column JPEG, and Fig.18 2om
top).
Encoder:
1. From BMP (8 bpp, 512x512)
2. To JPEG (0.8953 bpp, 512x512)
Channel/storage
Decoder:
1. From JPEG (0.8953 bpp, 512x512)
2. To BMP(24 bpp, 512x512)

SC (JPEG+SR): See Table lll, column SC (JPEG+SR), and
Fig.18'tdrom top).
Encoder:
1. BMP (8 bpp, 512x512)
2. Downsampling (8 bpp, 256x256)
3. JPEG (0.2957 bpp, 256x256)
Channel/storage
Decoder:
1. JPEG (0.2957 bpp, 256x256)
2. Upsampling (0.6502 bpp, 512x512)
3. Deblurring (0.7727 bpp, 512x512)
4. BMP (8 bpp, 512x512)

Experiment 4; JPEG2000 vs SC (JPEG2000+SR)
JPEG2000: See Table IV, column JPEG2000, and Fig.18 (4
from top).
Encoder:
1. From BMP (8 bpp, 512x512)
2. To JPEG2000 (3.7242 bpp, 512x512)
Channel/storage
Decoder:
1. From JPEG2000 (3.7242 bpp, 512x512)
2. To BMP (8 bpp, 512x512)

Fig.17: First (top) original image, second (codad decoded with
JPEG), third (coded and decoded with JPEG+Supenessipn),
fourth (coded and decoded with JPEG2000), fifthagalocoded and

decoded with JPEG2000+Supercompression).



SC (JPEG2000+SR):See Table 1V, column SC (JPEG2000+
SR), and Fiy(@own).

Encoder:
1. BMP (8 bpp, 512x512)
2. Downsampling (8 bpp, 256x256)
3. JPEG2000 (1.0066 bpp, 256x256)
Channel/storage
Decoder:
1. JPEG2000 (1.0066 bpp, 256x256)
2. Upsampling (1.6421 bpp, 512x512)
3. Deblurring (2.4230 bpp, 512x512)
4. BMP (8 bpp, 512x512)

The following tables show the metrics vs thgakithms for
both cases, i.e., JPEG and JPEG2000 vs Supercigores

TABLE Ill
LENA (GRAY, 8 BPR, 512x512):JPEGVS SC(JPEG+SR)
Metrics JPEG SC (JPEG+SR)
MAE 1.0785 2.0243
MSE 4.436: 14.623(
PSNF 41.660¢ 36.480:
bpr 0.895: 0.2957
CR 8.9358 27.052¢
TABLE IV
LENA (GRAY, 8 BPR, 512¢512):JPEG200(/s SC(JPEG2000+SR)
Metrics JPEG2000 SC (JPEG2000+SR)
MAE 0.0902 1.5312
MSE 0.0905 9.2596
PSNR 58.5647 38.4649
bpr 3.724: 1.006¢
CR 2.148: 7.947¢

Finally, all techniques were previously implemented
MATLAB® R2010b (Mathworks, Natick, MA) [23] on a
Notebook with Intel® Core(TM) i5 CPU M 430 @ 2.2 H®
and 6 GB RAM on Microsoft® Windows 7© Home Premium
64 bits, and then in NetStream®© of Dixar Inc.® [1&h
NVIDIA® [18] two Quadro 6000 + Tesla 2050 GPUs for
encoder, and NVIDIA® GTX285 GPU inside STB develdpe
by Dixar Inc.® [16] for decoder, as shown in Fig.16

VI. CONCLUSION

A. Group 1:

Experiment 1: JPEG vs SC (JPEG+SR)

In this experiment SC (JPEG+SR) has MAE, M®# a
PSNR with practically the same order of magnitudantJPEG
alone, however, bpp is five times lower, at the esdime, CR
is five times higher, see Table I.

As shown in Fig.17, the second (coded and detodth
JPEG) and the third (coded and decoded with JPE@efSu
compression) from the top, have the same look-aetl-dnd
image quality than the top, i.e., original imageAofyelina.

Experiment 2: JPEG2000 vs SC (JPEG2000+SR)
We make similar considerations for this experimesgar-

Fig.18: First (top) original image, second (codad decoded with
JPEG), third (coded and decoded with JPEG+Supenassipn),
fourth (coded and decoded with JPEG2000), fifthagalocoded and

decoded with JPEG2000+Supercompression).



ding to the last experiment, see Table Il and Figfburth
coded and decoded with JPEG2000 alone, and fifle¢@nd
decoded with JPEG2000+Supercompression), howelvere t
is a big difference between JPEG and JPEG-2000rpress
this type of image (compare bpp and CR of Tabled i&).

B. Group 2:

Experiment 3: JPEG vs SC (JPEG+SR)

In this experiment SC (JPEG+SR) has MAE, MSE andRS
with practically the same order of magnitude thB&EG alo-
ne, however, bpp is five times lower, at the saime,tCR is
five times higher, see Table Ill, idem Experiment 1

As shown in Fig.18, the second (coded and decadtd
JPEG) and the third (coded and decoded with JPE@efSu
compression) from the top, have the same look-aetl-dnd
image quality than the top, i.e., original imagd_eha.

Experiment 4: JPEG2000 vs SC (JPEG2000+SR)
Identical considerations than Experiment 2 are s&any,
see Table IV and Fig.18, with the same conclusabmut the
difference between JPEG and JPEG-2000 to comphéss
type of image (compare bpp and CR of Table Il Bfid

C. For both groups:

We used Texture Memory inside STB [16] GPGPU to
computational efficient implementation of the biginsional
convolutive mask of deblurring module, allowing tasreach
TV times, i.e., a frame every 40 milliseconds.
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